• 제목/요약/키워드: Linear velocity control

검색결과 314건 처리시간 0.028초

평면 XY 공기정압 스테이지의 운동특성 분석 (Analysis on the motion characteristics of surface XY aerostatic stage)

  • 황주호;박천홍;이찬홍;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.359-362
    • /
    • 2003
  • The aerostatic stage. which is used in semiconductor process, is demanded higher velocity and more precise accuracy for higher productivity and integrated performance. So, in the case of XY stage, H type structure, which is designed two co-linear axis of guide-way, driving force in one surface, has advantage of velocity and accuracy compared to conventional tacked type XY stage. To analyze characteristics of H type aerostatic stage, H type aerostatic surface XY stage is made, which is driven by linear motor and detected position with precise optical linear scale. And, analyze characteristics of motion error, effect of angular motion on positioning accuracy error and effect of simultaneous control on variation of velocity.

  • PDF

속도센서가 없는 비전시스템을 이용한 이동로봇의 목표물 추종 (Target Tracking Control of Mobile Robots with Vision System in the Absence of Velocity Sensors)

  • 조남섭;권지욱;좌동경
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.852-862
    • /
    • 2013
  • This paper proposes a target tracking control method for wheeled mobile robots with nonholonomic constraints by using a backstepping-like feedback linearization. For the target tracking, we apply a vision system to mobile robots to obtain the relative posture information between the mobile robot and the target. The robots do not use the sensors to obtain the velocity information in this paper and therefore assumed the unknown velocities of both mobile robot and target. Instead, the proposed method uses only the maximum velocity information of the mobile robot and target. First, the pseudo command for the forward linear velocity and the heading direction angle are designed based on the kinematics by using the obtained image information. Then, the actual control inputs are designed to make the actual forward linear velocity and the heading direction angle follow the pseudo commands. Through simulations and experiments for the mobile robot we have confirmed that the proposed control method is able to track target even when the velocity sensors are not used at all.

임베디드 보드 기반의 교육용 차동 구동 로봇 플랫폼 개발 (Development of Embedded Board-based Differential Driving Robot Platform for Education)

  • 최현주;이동현
    • 대한임베디드공학회논문지
    • /
    • 제17권2호
    • /
    • pp.123-128
    • /
    • 2022
  • This paper proposes a mobile robot platform for education that can experiment with various autonomous driving algorithms such as obstacle avoidance and path planning. The platform consists of a robot module and a remote controller module, both of which are based on the Arduino Nano 33 IoT embedded board. The robot module is designed as a differential drive type using two encoder motors, and the speed of the motor is controlled using PID control. In the case of the remote controller module, a command to control the robot platform is received with a 2-axis joystick input, and an elliptical grid mapping technique is used to convert the joystick input into a linear and angular velocity command of the robot. WiFi and Zigbee are used for communication between the robot module and the remote controller module. The proposed robot platform was tested by measuring and comparing the linear velocity and angular velocity of the actual robot according to the linear velocity and angular velocity commands of the robot generated by the input of the joystick.

선형홀센서와 고성능 미분기를 이용한 BLDC모터의 속도신호 구현 (Realization of Velocity of BLDC Motor Using Linear Type Hall-effect Sensor and Enhanced Differentiator)

  • 구정회;최장영
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.840-845
    • /
    • 2018
  • BLDC motor is widely used as a servo motor due to high efficiency, high power density, low inertia, and low maintenance. However, BLDC motor generally needs position and velocity sensors to control actuation system. Usually, analog tachometers and encoders have been used for velocity feedback sensors. However, using these types of sensors have problems such as the cost, space, and malfunction. So, This paper is to propose a new velocity measurement method using linear hall-effect and enhanced differentiator for BLDC motor. In order to verify the feasibility of the proposed method, several simulations and experiments are performed. It is shown that the proposed velocity measurement method can satisfy the requirements without using of velocity sensor.

유량제어밸브 개방형태가 선형펌프 방식 수중사출 시스템에 미치는 영향에 관한 수치적 연구 (Numerical Investigation of Effect of Opening Pattern of Flow Control Valve on Underwater Discharge System using Linear Pump)

  • 이선주
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.255-265
    • /
    • 2019
  • In the present study, the effect of opening patterns of a flow control valve on underwater discharge systems using a linear pump was investigated numerically. For that, a improved mathematical model was developed. The improvement is to separate a middle tank from a water cylinder because the cross-section area of the inlet of the middle tank is an important parameter. To validate the improved model, calculation results were compared with a previous study. The results showed that $2^{nd}$ order or more polynomial opening patterns had an advantage over ramp opening patterns. Higher an order of polynomial resulted in wider operating limits. An escape velocity and a maximum acceleration of underwater vehicle were affected by time derivative of the cross-section area of the flow control valve. Besides, as a velocity profile of the vehicle got closer to linearity, the escape velocity got faster and the maximum acceleration got smaller. And velocities of the vehicle and piston had similar variation trend.

ECAM Control System Based on Auto-tuning PID Velocity Controller with Disturbance Observer and Velocity Compensator

  • Tran, Quang-Vinh;Kim, Won-Ho;Shin, Jin-Ho;Baek, Woon-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권2호
    • /
    • pp.113-118
    • /
    • 2010
  • This paper proposed an ECAM (Electronic cam) control system which has simple and general structure. The proposed cam controller adopted the linear and polynomial curve-fitting method to generates a smooth cam profile curve function. Smooth motion trajectory of master actuator guarantees the good performance of slave motion and has an important effect on the interpolation quality of ECAM. The auto-tuning PID velocity controller was applied to overcome the uncertainties in ECAM, and the gains of the controller are updated continuously to ensure the consistency of system performance under varying working conditions. The robustness of system against the varying load torque disturbances and noises is guaranteed by using the load torque disturbance observer to suppress the disturbance on master actuator. The velocity compensator was applied to compensate the degradation of performance of slave motion caused from the varying driving speed of master motion. The stability and validity of the proposed ECAM control system was verified by simulation results.

분리된 조작도를 이용한 여유자유도 로봇의 최적 자세에 관한 연구 (Study on the Optimal Posture for Redundant Robot Manipulators Based on Decomposed Manipulability)

  • 이지홍;원경태
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.249-256
    • /
    • 1999
  • The conventional robot manipulability is decomposed into linear manipulability and angular manipulability so that they may be analysed and visualized in easy way even in the case of 3 dimensional task space with 6 variables. After the Jacobian matrix is decomposed into linear part and angular part, constraint on joint velocities is transformed into linear task velocity and angular task velocity through the decomposed Jacobian matrices. Under the assumption of redundant robot manipulators, several optimization problems which utilize the redundancy are formulated to be solved by linear programming technique or sequential quadratic programming technique. After deriving the solutions of the optimization problems, we give graphical interpretations for the solutions.

  • PDF

선형 펄스 전동기의 특성 해석 (The Charcteristics Analysis of Linear Pulse Motor)

  • 조윤현;이광호;김성도
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권5호
    • /
    • pp.249-256
    • /
    • 1999
  • This paper describes static characteristics analysis of linear pulse motor(LPM) with two permanent magnets. Linear pulse motors are finding a wide range of application for the Factory-Automation or the Office-Automation. Typically, LPM provides for a reliable and precise control of position, velocity, or acceleration without using a closed-loop system. Some of the advantages of LPMs are ease of control, step multiplication, static and dynamic positioning, and locking force. The flux density and thrust of LPM is computed by the FEM and magnetic equivalent circuits which considered the magnetic nonlinear phenomena. The result of characteristics analysis are shown as the flux, the air gap reluctance and the thrust. The velocity and position characteristics as a function of unit step input is measured. To estimate the unit step response charecteristic of LPM, the simulation results by Matlab and the experimental results is compared.

  • PDF

모델 파라미터 없는 쿠프만 연산자 기반의 영구자석 동기전동기의 속도제어 (Model Parameter-free Velocity Control of Permanent Magnet Synchronous Motor based on Koopman Operator)

  • 김준식;우희진;최영진
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.308-313
    • /
    • 2022
  • This paper proposes a velocity control method for a permanent magnet synchronous motor (PMSM) based on the Koopman operator that does not require model parameter information except for pole-pair of the motor and external load. First, the Koopman operator is derived using observable functions and observation data. Then, the desired q-axis current corresponding to the desired velocity is generated using the relationship between the continuous-time Koopman operator and the dynamics of PMSM. Also, the dynamic equation of PMSM is expressed as a linear form in observable space using the discrete-time Koopman operator. Finally, it is applied to the linear quadratic regulator (LQR) to derive the final form of control input. To verify the proposed method, the conventional cascade PI controller and the LQR controller configured with the existing technique are compared with the proposed method in the viewpoint of q-axis current generation and velocity tracking performance in an environment with noise and external load.

유도전동기 속도제어를 위한 비선형 비례적분 제어기 설계 (Design of Nonlinear PI Controller for velocity Control of IM)

  • 오태석;최준배;김일환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.47-49
    • /
    • 2005
  • This paper presents a robust speed control method of induction motors(IM) using a Non-linear PI controller(NPI), NPI is high gain controller in region of small error, and low gain controller in region of large error. so in steady state, system will be robust against variation of load torque. The simulation and experiment results confirm the validity of proposed control scheme.

  • PDF