• Title/Summary/Keyword: Linear transfer

Search Result 1,133, Processing Time 0.037 seconds

SIMULATION OF CLOUD'S VISIBLE REFLECTION USING MODIS CLOUD PRODUCTS

  • Ham, Seung-Hee;Sohn, Byung-Ju
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.668-671
    • /
    • 2006
  • Radiative transfer modeling of ice clouds is developed. Ice clouds located near tropopause reflect most of sunlight, thus atmospheric and surface effects can be minimized. Cloud properties such as cloud optical thickness (COT) and effective radius are important parameters to determine the magnitude of reflectance, while atmospheric and surface parameters rarely affect reflectance value. For selected homogeneous cloud pixels of MODerate Resolution Imaging Spectroradiometer (MODIS) observation, reflectances are calculated using MODIS cloud products as inputs of radiative transfer model (RTM). For three types of phase function (Henyey-Greenstein, Garcia-Siewert, Baum) calculated reflectances are compared with observations for validation. All cases show linear relationship between simulated values and measured values, however each represent different bias and slope. The result shows that phase function determine angular distribution of reflectance.

  • PDF

A Note on Bode Plot Asymptotes based on Transfer Function Coefficients

  • Kim, Young-Chol;Lee, Kwan-Ho;Woo, Young-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.664-669
    • /
    • 2005
  • In this note, we present a different asymptotes from the standard approximate lines of the Bode magnitude plot. Wherein the pseudo break frequency is defined in terms of coefficients of denominator and numerator polynomials of the transfer function instead of its poles and zeros. Several comparative examples are given. This result can be used for the characteristic ratio assignment(CRA) [1], [2] with frequency response requirements, which is a method of designing linear controller in parameter space.

  • PDF

A Low-Complexity CLSIC-LMMSE-Based Multi-User Detection Algorithm for Coded MIMO Systems with High Order Modulation

  • Xu, Jin;Zhang, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1954-1971
    • /
    • 2017
  • In this work, first, a multiuser detection (MUD) algorithm based on component-level soft interference cancellation and linear minimum mean square error (CLSIC-LMMSE) is proposed, which can enhance the bit error ratio (BER) performance of the traditional SIC-LMMSE-based MUD by mitigating error propagation. Second, for non-binary low density parity check (NB-LDPC) coded high-order modulation systems, when the proposed algorithm is integrated with partial mapping, the receiver with iterative detection and decoding (IDD) achieves not only better BER performance but also significantly computational complexity reduction over the traditional SIC-LMMSE-based IDD scheme. Extrinsic information transfer chart (EXIT) analysis and numerical simulations are both used to support the conclusions.

Analysis of the Singular Point of Cyclic Voltammograms Recorded with Various Scan Rates

  • Chang, Byoung-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.244-249
    • /
    • 2017
  • This paper presents the results of an investigation into the isoamperic point of cyclic voltammograms, which is defined as the singular point where the voltammograms of various scan rates converge. The origin of the unique point is first considered from a theoretical perspective by formulating the voltammetric curves as a system of linear equations, the solution of which indicates that a trivial solution is only available at the potential at which the net current is zero during the reverse potential scan. In addition, by way of a mathematical formulation, it was also shown that the isoamperic point is dependent on the switching potential of the potential scanning. To validate these findings, theoretical and practical cyclic voltammmograms were studied using finite-element based digital simulations and 3-electrode cell experiments. The new understanding of the nature of the isoamperic point provides an opportunity to measure the charge transfer effects without the influence of the mass transfer effects when determining the thermodynamic and kinetic characteristics of a faradaic system.

Design Optimization of Plate Heat Exchanger with Staggered Pin Arrays (엇갈린 핀 배열을 갖는 평판 열교환기의 최적 설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon;Lee, Kwan-Soo;Chang, Kyu-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1441-1446
    • /
    • 2003
  • The design optimization of the plate heat exchanger with staggered pin arrays for a fixed volume is performed numerically. The flow and thermal fields are assumed to be a streamwise-periodic flow and heat transfer with constant wall temperature and they are solved by using the finite volume method. The optimization is carried out by using the sequential linear programming (SLP) method and the weighting method is used for solving the multi-objective problem. The results show that the optimal design variables for the weighting coefficient of 0.5 are as follows; S=6.497mm, P=5.496mm, $D_1=0.689mm$, and $D_2=2.396mm$. The Pareto optimal solutions are also presented.

  • PDF

Mooring Tension and Motion Characteristics of a Floating Fish Reef with Pipe in Waves and Currents Using Numerical Model

  • Kim, Tae-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.7
    • /
    • pp.997-1008
    • /
    • 2010
  • The mooring line tension and motion response of a floating fish reef system were analyzed using a Morison equation type numerical model. The reef structure was constructed with pipe and suspended up from the bottom with a single, high tension mooring. Input forcing parameters into the model consisted of both regular and random waves, with and without currents. Heave, surge and pitch dynamic calculations were made, along with the tension response in the mooring lines. Results were analyzed in both the time and frequency domains and where appropriate, linear transfer functions were calculated. In addition, damped and natural periods of the system were determined to examine a resonating situation.

A Study on the Development of Automation Unloader for Press Metalmold (프레스 금형용 Unloader 자동화 시스템개발에 관한 연구)

  • 김재열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.156-160
    • /
    • 1996
  • In this study of made Unloader is moving linear transfer system for mainly plastic working or forming of small electronic unit and other at press line. This machine for lading and unloading a workpiece has been installed in a press in order to load and unload a workpiece form a press die. Control method be used PLC. it took data of input from each sensor and send signal of output to actuator today we have a lot of problem at work of press line. most of press work be operated by human so they often hurted terreble accident by press machine. Because press working system in automotive factories are now changing over to a transfer press working system this Unloader will give more easily and speedy production and manpower saving less of pruduction cost high perfomance

  • PDF

Development of Prediction Model for Average Temperature in the Roughing Mill (열연 조압연공정에 있어서의 평균온도 예측모델 개발)

  • Moon C. H.;Park H. D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.368-377
    • /
    • 2004
  • A mathematical model was developed for the prediction of the average temperature and RDT(RM Delivery temperature) in a roughing mill. The model consisted of three parts as follows (1) The intermediate numerical model calculated the deformation and heat transfer phenomena in the rolling: region by steady state FEM and the heat transfer phenomena in the interpass region by unsteady state FEM (2) The Off-line prediction model was derived from non-linear regression analysis based on the results of intermediate numerical model considering the various rolling conditions, (3) Using the heat flux in rolling region, temperature profile along thickness direction was calculated. For validation of the presented model, the rolling force per pass and RDT measued in on-line process was compared with those of model and the results showed close agreement with the existing data. In order to demonstrate the effectiveness of the proposed model, the various rolling conditions was tested.

  • PDF

CFD Analysis of Turbulent Heat Transfer in a Heated Rod Bundle (가열 봉다발의 난류 열전달에 대한 전산유체역학 해석)

  • In, Wang-Kee;Oh, Dong-Seok;Chun, Tae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.598-603
    • /
    • 2003
  • A CFD analysis has been performed to investigate turbulent heat transfer in a triangular rod bundle with a pitch-to-diameter ratio(P/D) of 1.06. Anisotropic turbulence models predicted the turbulence-driven secondary flow in the triangular subchannel and the distributions of time mean velocity and temperature showing significantly improved agreement with the measurements over the linear standard ${\kappa}-{\varepsilon}$. The anisotropic turbulence models predicted turbulence structure in large flow region fairly well but could not predict the very high turbulent intensity of azimuthal velocity observed in narrow flow region(gap).

  • PDF

Rigorous Dynamic Simulation of PTSA Process (PTSA 공정의 상세 동적 모사)

  • Lee, Hye-Jin;Ko, Dae-Ho;Moon, Il;Choi, Dae-Ki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.309-309
    • /
    • 2000
  • The main objective of this study is to understand the regeneration step of the PTSA(Pressure and thermal swing adsorption) process below the atmospheric pressure by rigorous dynamic simulation. This target process is to recover toluene using activated carbon as an adsorbent. To do this, the dynamic simulations for the regeneration step are performed at 360, 490, 590mmHg and at high temperature after the simulation of the adsorption step at latm and 298K. A mathematical model was developed to simulate the column dynamics of the adsorption systems. This model is based on non-equilibrium, non-isothermal and non-adiabatic conditions, and axial dispersion and heat conduction are also considered. Heat transfer resistances are considered in gas-solid, gas-column wall and column wall-outside air. The LDF(Linear Driving Force) approximation model describes the mass transfer rate between the gas and solid phase. This study shows that the recovery of toluene by PTSA is more preferable than that by general TSA.

  • PDF