• Title/Summary/Keyword: Linear transfer

Search Result 1,133, Processing Time 0.03 seconds

The Process of the Interjoint and Intersegmental Coordination of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 인체관절과 분절사이의 협응 과정)

  • Yoon, Chang-Jin;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.179-189
    • /
    • 2008
  • The purpose of this study was to investigate interjoint and intersegmental coordination of lower segments in skill process. For the investigation, we examined the difference of resultant linear velocity of segments and angle vs angle graph. Novice subjects were 9 male middle school students who have never been experienced a taekwondo. We analyzed kinematic variables of Side Kick motion through videographical analysis. The conclusions were as follows. 1. Examining the graph of novice subjects' maximal resultant linear velocity of the thigh, shank, and foot segment, as it gets closer to the end of the training, the maximal resultant linear velocity in each segment increases which can be assumed to be a result of the effective momentum transfer between adjacent segments. 2 This research showed a sequential transfer from trunk, to thigh, and then to shank as it gets closer to the end of learning at intersegment angular velocity, and it also showed pattern of throwlike motion and pushlike motion. 3. In three dimension of flexion-extension, adduction-abduction and internal-external rotation of the thigh and shank segment, the angle-angle diagram of knee joint and of hip joint showed that dynamic change was indicated at the beginning of learning but stable coordination pattern was indicated like skilled subject as novice subjects became skilled.

Structural Optimization for LMTT-Mover Using the Kriging Based Approximation Model (크리깅 근사모델 모델을 이용한 LMTT 이동체의 구조최적설계)

  • Lee, Kwon-Hee;Park, Hyung-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.385-390
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Techn-ology) is a horizontal transfer system for the yard automation, which has been proposed to take the place of AGV (Automated Guided Vehicle) in the maritime container terminal. The system is based on PLMSL (Permanent Magnetic Linear Synchronous Motor) that consists of stator modules on the rail and shuttle car. It is desirable to reduce the weight of LMTT in order to control the electronic devices with minimum energy. In this research, the DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the structural responses. Then, the GRG(Generalized Reduced Gradient) method built in Excel is adopted to determine the optimum. The objective function is set up as weight. On the contrary, the design variables are considered as transverse, longitudinal and wheel beam's thicknesses, and the constraints are the maximum stresses generated by four loading conditions.

  • PDF

On the second order effect of the springing response of large blunt ship

  • Kim, Yooil;Park, Sung-Gun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.873-887
    • /
    • 2015
  • The springing response of a large blunt ship was considered to be influenced by a second order interaction between the incoming irregular wave and the blunt geometry of the forebody of the ship. Little efforts have been made to simulate this complicated fluid-structure interaction phenomenon under irregular waves considering the second order effect; hence, the above mentioned premise still remains unproven. In this paper, efforts were made to quantify the second order effect between the wave and vibrating flexible ship structure by analyzing the experimental data obtained through the model basin test of the scaled-segmented model of a large blunt ship. To achieve this goal, the measured vertical bending moment and the wave elevation time history were analyzed using a higher order spectral analysis technique, where the quadratic interaction between the excitation and response was captured by the cross bispectrum of two randomly oscillating variables. The nonlinear response of the vibrating hull was expressed in terms of a quadratic Volterra series assuming that the wave excitation is Gaussian. The Volterra series was then orthogonalized using Barrett's procedure to remove the interference between the kernels of different orders. Both the linear and quadratic transfer functions of the given system were then derived based on a Fourier transform of the orthogonalized Volterra series. Finally, the response was decomposed into a linear and quadratic part to determine the contribution of the second order effect using the obtained linear and quadratic transfer functions of the system, combined with the given wave spectrum used in the experiment. The contribution of the second order effect on the springing response of the analyzed ship was almost comparable to the linear one in terms of its peak power near the resonance frequency.

Structural Optimization for LMTT-Mover Using Sequential Kriging Based Approximation Model (순차적 크리깅 근사모델을 이용한 LMTT 이송체의 구조최적설계)

  • Park Hyung Wook;Han Dong Seop;Lee Kwon Hee;Han Geun Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.289-295
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Techn-ology) is a horizontal transfer system for the yard automation This system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) toot consists of stator modules on the rail and shuttle car. In this research, the kriging interpolation method with sequential sampling find the optimum design of mover in LMTT. The design variables are considered as the transverse, longitudinal and wheel beam's thicknesses. The objective function is set up as weight, while the constant function are set up as the stresses generated by four loading conditions. The objective function is set up as weight. The optimum results obtained by the suggested method are compared with those by the GENESIS.

  • PDF

A simplified design approach for modelling shear force demand on tower walls supported on a transfer structure in regions of lower seismicity

  • Yacoubian, Mehair;Lam, Nelson;Lumantarna, Elisa;Wilson, John L.
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.97-111
    • /
    • 2018
  • Buildings featuring a transfer structure can be commonly found in metropolitan cities situated in regions of lower seismicity. A transfer structure can be in the form of a rigid plate or an array of deep girders positioned at the podium level of the building to support the tower structure of the building. The anomalous increase in the shear force demand on the tower walls above the podium is a major cause for concern. Design guidance on how to quantify these adverse effects is not available. In this paper a simplified method for quantifying the increase in the shear force demand on the tower walls is presented. In view of the very limited ductile nature of this type of construction the analysis presented herein is based on linear elastic behaviour.

Measurement Time-Delay Error Compensation for Transfer Alignment (전달정렬의 측정치 시간지연 오차보상 기법)

  • Lim, You-Chol;Song, Gi-Won;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Design Optimization of Pin-Fin Sharp to Enhance Heat Transfer

  • Li, Ping;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.185-190
    • /
    • 2005
  • This work presents a numerical procedure to optimize the elliptic-shaped pin fin arrays to enhance turbulent heat transfer. The response surface method is used as an optimization technique with Reynolds-averaged Navier Stokes analysis of flow and heat transfer. Shear stress transport (SST) turbulence model is used as a turbulence closure. Computational results for average heat transfer rate show a reasonable agreement with the experimental data. Four variables including major axis length, minor axis length, pitch and the pin fin length nondimensionalized by duct height are chosen as design variables. The objective function is defined as a linear combination of heat transfer and friction-loss related terms with weighting factor. D-optimal design is used to reduce the data points, and, with only 28 points, reliable response surface is obtained. Optimum shapes of the pin-fin arrays have been obtained in the range from 0.0 to 0.1 of weighting factor.

  • PDF

The Control of Flexible Beam using Nonlinear Compensator with Dual-Input Describing Function (쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 제어)

  • 권세현;이형기;최부귀
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.644-650
    • /
    • 1998
  • In this paper , a state space model for flexible beam is presented using the assumed-modes approach. The state space equation is derived for a flexible beam in which one end is connected to a motor and is driven by a torque equation and the other end is free. Many of the transfer function proposed thus far use the torque to the flexible beam as the input and the tip deflection of the flexible beam as the output. The Technique for the analysis and synthesis of the dual-input describing function(DIDF) is introduced here and the construction of a non-linear compensator, based on this technique, is proposed. This non-linear compensator, properly connected in the direct path of a closed-loop linear or non-linear control system. The above non-linear network is used to compensate linear and non-linear systems for instability, limit cycles, low speed of response and static accuracy. The effectiveness of the proposed scheme is demonstrated through computer simulation and experimental results.

  • PDF

Effect of Pressure on Interfacial Heat Transfer Coefficient in the Squeeze Casting Process (용탕단조시 가압력에 따른 계면열전달계수의 변화)

  • Kim, Jin-Soo;Ahn, Jae-Young;Han, Yo-Sub;Lee, Ho-In;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.248-257
    • /
    • 1994
  • Research in heat transfer and solidification commonly involves experimentation and mathematical modeling with associated numerical analysis and computation. Inverse problems in heat transfer are part of this paradigm. During the solidification of metal casting, an interfacial heat transfer resistance exists at the boundary between the casting and the mold, and this heat transfer resistance usually varies with time. In the case of the squeeze casting the contact heat transfer resistance is decreased by pressure and ideal contact is almost accomplished. In the present work, heat transfer coefficient, which is inverse value of the heat transfer resistance, was used for convenience. A numerical technique, Non-Linear Estimation has been adopted for calculation of the casting/mold interfacial heat transfer coefficient during the squeeze casting process. In this method, the measured temperature data from experiment were used. The computational results were applied to the analysis of heat transfer and solidification.

  • PDF

A Study on the Technology Transfer Efficiency for Public Institutes Using DEA Model (DEA 모형을 이용한 공공연구기관의 기술이전 효율성 분석에 관한 연구)

  • Hyon, Man-Sok;Yoo, Wang-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.94-103
    • /
    • 2008
  • This study measured technology transfer efficiency for public institutes. The study made use of DEA being one of the non-parametric linear programming to evaluate technology transfer efficiency for public institutes and to measure technology efficiency, pure technical efficiency and scale efficiency. The measurement of the technology transfer efficiency for public institutes was as follows: The cause of the technology transfer inefficiency was affected by pure technical inefficiency more than by scale inefficiency. Public institutes' RTS(Return To Scale) value varied depending upon the features of the organizations than the features of the regions. Public research institutes' RTS value is more effective than universities' RTS value. We compared the RTS group with the RTS of Projected DMU groups. The RTS group had constant returns to scale effect while the RTS of the Projected DMU had increasing returns to scale effect. The technology transfer efficiency of public institutes varied depending upon the features of the organizations and regions : The technology transfer efficiency of public institutes were as follows : public research institutes at the metropolitan area, public research institutes at the local areas, universities at the metropolitan area and universities at the local areas. In other words, the technology transfer efficiency was affected by organizational characteristics more than by regional characteristics at the place where public institutes were located.