• 제목/요약/키워드: Linear time periodic system

검색결과 42건 처리시간 0.023초

LTI model realization problem of linear periodic discrete-time systems

  • Su, Laiping;Saito, Osami;Abe, Kenichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1139-1144
    • /
    • 1990
  • In this paper, we consider linear periodic discrete-time control systems under periodic compensation. Such a closed-loop system generally represents a periodic time-varying system. We examine the problem of finding a compensator such that the closed-loop system is realized as LTI model (if possible) with the closed-loop stability being satisfied. We present a necessary and sufficient condition for solving such problem and also give the characterization of realizable LTI models.

  • PDF

선형 주기시스템의 제어 및 수치해석적 절차 수립에 관한 연구 (Development of the Numerical Procedures for the Control of Linear Periodic Systems)

  • 조장현
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.121-128
    • /
    • 2000
  • The scope of this paper is focused to the systems which have the time period and they should be necessarily studied in the sense of stability and design method of controller to stabilize the orignal unstable systems. In general, the time periodic systems or the systems having same motions during certain time interval are easily found in rotating motion device, i.e., satellite or helicopter and widely used in factory automation systems. The characteristics of the selected dynamic systems are analyzed with the new stability concept and stabilization control method based on Lyapunov direct method. The new method from Lyapunov stability criteria which satisfies the energy convergence is studied with linear algebraic method. And the numerical procedures are developed with computational programming method to apply to the practical linear periodic systems. The results from this paper demonstrate the usefulness in analysis of the asymptotic stability and stabilization of the unstable linear periodic system by using the developed simulation procedures.

  • PDF

On the stabilization of linear discrete time systems subject to input saturation

  • Choi, Jinhoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1770-1773
    • /
    • 1997
  • In this paper, a linear discrete time system subject to the input saturatioin is shown to be exponentially stabilizable on any compact subset of the constrained asymptotically stabilizable set by a linear periodic variable structure controller. We also establish tat any neutrally stable system subject to the input saturation can be globally asymptotically stabilizable via linear feedback.

  • PDF

다중비 신호처리에 적용한 선형 주기적 시변 시스템의 입출력 이득 (Input-Output Gains of Linear Periodic Time-Varying Systems with Applications to Multirate Signal Processing)

  • 이상철;박계원
    • 한국정보통신학회논문지
    • /
    • 제4권5호
    • /
    • pp.963-969
    • /
    • 2000
  • 본 논문에서는, 선형 주기적 시변 시스템에 대해서, 두 개의 입출력 이득을 정의한다. 그 하나는 단위 크기의 ι$_2$노름을 갖는 모든 입력에 대한 최악의 $\iota_2$ 노름의 출력의 비로서, G($\iota_2,\iota_2$ 로 표기한다. 또 다른 하나는 단위 크기의 RMS 값을 갖는 모든 입력에 대한 최악의 RMS 값의 출력의 비로서, G(RMS, RMS)로 표기한다. 선형 시불변 시스템에 대해서는 이 두 개의 이득은 등가라는 사실이 잘 알려져 있다. 본 논문에서는 선형 주기적 시변 시스템에 대해서도 이 두 개의 이득이 등가라는 것을 증명한다. 또한, 선형 주기적 시변 시스템에 대한 주파수 응답을 얻는 두 가지 방법 사이의 관계를 유도한다. 이렇게 정의된 입출력 이득은 M-채널 필터 뱅크에 적용한다. 필터 뱅크는 음성 압축 등에 사용되는 대표적인 다중비 신호처리 시스템이다. 이러한 필터뱅크에는 일반적으로 에일리어징 왜곡, 진폭 왜곡 및 위상 왜곡이 존재한다. 본 논문에서는 오차 시스템의 G($\iota_2,\iota_2$ 이득을 최적화 하는 방법에 의해 필터 뱅크를 설계함으로써, 필터 뱅크에서 일반적으로 존재하는 왜곡을 작게할 수 있음을 보인다.

  • PDF

Study of New Control Method for Linear Periodic System

  • Jo, Janghyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.83-87
    • /
    • 1999
  • The purpose of this study is to provide the new method for selection of a close to optimal scalar control of linear time-periodic system. The case of scalar control is considered, the gain matrix being assumed to be at worst periodic with the system period T. The form of gain matrix may have various kinds but must have same period, for example, one of each element being represented by Fourier series. As the optimal gain matrix I consider the matrix ensuring the minimum value of the larger real part of the Poincare exponents of the system. Finally we present a pole placement algorithm to make the given system be stable. It is possible to determine the stability of the given periodic system without get the analytic solution. The application of the method does not require the construction of the Floquet solution. At present state of determination of the gain matrix for this case will be done only by systematic numerical search procedures.

  • PDF

Design method of computer-generated controller for linear time-periodic systems

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.225-228
    • /
    • 1992
  • The purpose of this project is the presentation of new method for selection of a scalar control of linear time-periodic system. The approach has been proposed by Radziszewski and Zaleski [4] and utilizes the quadratic form of Lyapunov function. The system under consideration is assigned either in closed-loop state or in modal variables as in Calico, Wiesel [1]. The case of scalar control is considered, the gain matrix being assumed to be at worst periodic with the system period T, each element being represented by a Fourier series. As the optimal gain matrix we consider the matrix ensuring the minimum value of the larger real part of the two Poincare exponents of the system. The method, based on two-step optimization procedure, allows to find the approximate optimal gain matrix. At present state of art determination of the gain matrix for this case has been done by systematic numerical search procedure, at each step of which the Floquet solution must be found.

  • PDF

Steady-State Harmonic Domain Matrix-Based Modeling of Four-Quadrant EMU Line Converter

  • Wang, Hui;Wu, Mingli;Agelidis, Vassilios G.;Song, Kejian
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.572-579
    • /
    • 2014
  • As a non-linear time variant system, the four-quadrant line converter of an electric multiple unit (EMU) was expressed by linear time periodic functions near an operating point and modeled by a steady-state harmonic domain matrix. The components were then combined according to the circuit connection and relations of the feedback control loops to form a complete converter model. The proposed modeling method allows the study of the amplitude of harmonic impedances to explore harmonic coupling. Moreover, the proposed method helps provide a better design for the converter controllers, as well as solves the problem in coordination operation between the EMUs and the AC supply. On-site data from an actual $CRH_2$ high-speed train were used to validate the modeling principles presented in the paper.

자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법 (A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF

확률적 예산 제약을 고려한 주기적 재고관리 정책에 대한 연구 (A Study on Periodic Review Inventory System under Stochastic Budget Constraint)

  • 이창용;이동주
    • 산업경영시스템학회지
    • /
    • 제37권1호
    • /
    • pp.165-171
    • /
    • 2014
  • We develop an optimization algorithm for a periodic review inventory system under a stochastic budget constraint. While most conventional studies on the periodic review inventory system consider a simple budget limit in terms of the inventory investment being less than a fixed budget, this study adopts more realistic assumption in that purchasing costs are paid at the time an order is arrived. Therefore, probability is employed to express the budget constraint. That is, the probability of total inventory investment to be less than budget must be greater than a certain value assuming that purchasing costs are paid at the time an order is arrived. We express the budget constraint in terms of the Lagrange multiplier and suggest a numerical method to obtain optional values of the cycle time and the safety factor to the system. We also perform the sensitivity analysis in order to investigate the dependence of important quantities on the budget constraint. We find that, as the amount of budget increases, the cycle time and the average inventory level increase, whereas the Lagrange multiplier decreases. In addition, as budget increases, the safety factor increases and reaches to a certain level. In particular, we derive the condition for the maximum safety factor.

전력부하의 확률가정적 최적예상식의 유도 및 전산프로그래밍에 관한 연구 (Study on a Probabilistic Load Forecasting Formula and Its Algorithm)

  • 고명삼
    • 전기의세계
    • /
    • 제22권2호
    • /
    • pp.28-32
    • /
    • 1973
  • System modeling is applied in developing a probabilistic linear estimator for the load of an electric power system for the purpose of short term load forecasting. The model assumer that the load in given by the suns of a periodic discrete time serier with a period of 24 hour and a residual term such that the output of a discrete time dynamical linear system driven by a white random process and a deterministic input. And also we have established the main forecasting algorithms, which are essemtally the Kalman filter-predictor equations.

  • PDF