• Title/Summary/Keyword: Linear restoring force

Search Result 38, Processing Time 0.021 seconds

A Numerical Study on the Simultaneous Identification of Excitation Force and Restoring Characteristic in Linear Forced Oscillation System (선형 조화 가진 시스템에서의 외부 가진력 및 복원 특성 동시 인식에 대한 수치 연구)

  • Jang, Taek Soo;Park, Jinsoo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.943-947
    • /
    • 2014
  • Recently, a new method for reconstructing a forced nonlinear dynamic system has been proposed; specifically, the simultaneous reconstruction of its excitation as well as restoring characteristics of the system. The reconstruction was just theoretically shown to be possible by measuring the system's responses, based on newly introduced notions, a J-function and a zero-crossing time. However, numerically in the current paper, we are to reconstruct a linear system, i.e., we focus on numerical experiments to reconstruct both the excitation and the linear restoring characteristic of a linear forced oscillating system by using response data, based on the J-function and the zero-crossing time.

Analysis of hysteresis rule of energy-saving block and invisible multi-ribbed frame composite wall

  • Lin, Qiang;Li, Sheng-cai;Zhu, Yongfu
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.261-272
    • /
    • 2021
  • The energy-saving block and invisible multi-ribbed frame composite wall (EBIMFCW) is a new type of load-bearing wall. The study of this paper focus on it is hysteresis rule under horizontal cyclic loading. Firstly, based on the experimental data of the twelve specimens under horizontal cyclic loading, the influence of two important parameters of axial compression ratio and shear-span ratio on the restoring force model was analyzed. Secondly, a tetra-linear restoring force model considering four feature points and the degradation law of unloading stiffness was established by combining theoretical analysis and regression analysis of experimental data, and the theoretical formula of the peak load of the EBIMFCW was derived. Finally, the hysteretic path of the restoring force model was determined by analyzing the hysteresis characteristics of the typical hysteresis loop. The results show that the curves calculated by the tetra-linear restoring force model in this paper agree well with the experimental curves, especially the calculated values of the peak load of the wall are very close to the experimental values, which can provide a reference for the elastic-plastic analysis of the EBIMFCW.

A Study on the Nonlinear Restoring Force Characteristics for Shear Wall Structures by JEAC 4601 (JEAC 4601에 의한 전단벽 구조물의 비선형 복원력 특성에 대한 고찰)

  • Lee, Won Hun;Kim, Hee Kyun;Song, Sung Bin;Hwang, Kee Tae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.121-128
    • /
    • 2021
  • Structures of domestic nuclear power plants are designed to perform elastic behavior against beyond design earthquakes, but studies on the nonlinear behavior of structures have been insufficient since the beyond design earthquake. Accordingly, it is judged that it will be necessary to develop an evaluation method that considers the nonlinear behavioral characteristics to check the safety margin for a standard nuclear power plant structure. It is confirmed that the restoring force characteristics for each member level can be identified through the calculation formula, and the lateral stiffness for each story can also be easily calculated by JEAC 4601. In addition, as a result of applying the evaluation method of JEAC 4601 as a nonlinear restoring force model of the nuclear power plant, a certain degree of safety margin can be identified.

Effects of nonlinear FK (Froude- Krylov) and hydrostatic restoring forces on arctic-spar motions in waves

  • Jang, HaKun;Kim, MooHyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.297-313
    • /
    • 2020
  • An Arctic Spar is characterized by its conical shape near the waterline. In this case, the nonlinear effects from its irregular hull shape would be significant if there is either a large amplitude floater motion or steep wave conditions. Therefore, in this paper, the nonlinear effects of an Arctic Spar are numerically investigated by introducing a weakly nonlinear time-domain model that considers the time dependent hydrostatic restoring stiffness and Froude-Krylov forces. Through numerical simulations under multiple regular and irregular wave conditions, the nonlinear behavior of the Arctic Spar is clearly observed, but it is not shown in the linear analysis. In particular, it is found that the nonlinear Froude-Krylov force plays an important role when the wave frequency is close to the heave natural frequency. In addition, the nonlinear hydrostatic restoring stiffness causes the structure's unstable motion at a half of heave natural period.

Restoring force model for circular RC columns strengthened by pre-stressed CFRP strips

  • Zhou, Changdong;Lu, Xilin;Li, Hui;Tian, Teng
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.371-386
    • /
    • 2014
  • This paper presents a tri-linear restoring force model based on the test results of 12 circular RC columns strengthened by CFRP strips under low cyclic loading. The pre-stress of CFRP strips and axial load ratio of specimens are considered as the affect parameters of the proposed model. All essential characteristics of the hysteretic behavior of the proposed model, including the hysteretic rules, main performance points, strength degradation, stiffness degradation and confinement effects are explicitly analyzed. The calculated results from the proposed model are in good agreement with the experimental results, which shows that the recommended model can be reliably used for seismic behavior predictions of circular RC columns strengthened by pre-stressed CFRP strips.

Analysis of Response behaviors of offshore mooring structures by a piecewise-linear system (구분적선형시스템을 이용한 해양 구조물의 거동분석)

  • 마호성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.251-265
    • /
    • 1997
  • A piecewise-linear system is utilized to model the offshore mooring system. The approximated piecewise-linear restoring force is obtained to be compared with the analytically derived restoring force of a mooring system. Two systems are compared to verify the applicability of the piecewise-linear system to evaluate responses of the mooring system. Using the piecewise-linear system, the response behaviors of mooring systems are examined under various excitations. Nonlinearity of the system and effects of both system and excitation parameters are intensively examined. System responses are identified mainly by observing Poincare maps. The mooring system is found to have various types of responses such as regular harmonic, subharmonic and complex nonlinear behaviors, including chaos by utilizing a piecewise-linear system. Various values of parameters are applied to determine the effects of parameters upon system responses. Response domains are determined by establishing parametric maps.

  • PDF

Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses

  • Lei, Ying;Hua, Wei;Luo, Sujuan;He, Mingyu
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.291-304
    • /
    • 2015
  • Compared with the identification of linear structures, it is more challenging to conduct identification of nonlinear structure systems, especially when the locations of structural nonlinearities are not clear in structural systems. Moreover, it is highly desirable to develop methods of parametric identification using partial measurements of structural responses for practical application. To cope with these issues, an identification method is proposed in this paper for the detection and parametric identification of structural nonlinear restoring forces using only partial measurements of structural responses. First, an equivalent linear structural system is proposed for a nonlinear structure and the locations of structural nonlinearities are detected. Then, the parameters of structural nonlinear restoring forces at the locations of identified structural nonlinearities together with the linear part structural parameters are identified by the extended Kalman filter. The proposed method simplifies the identification of nonlinear structures. Numerical examples of the identification of two nonlinear multi-story shear frames and a planar nonlinear truss with different nonlinear models and locations are used to validate the proposed method.

Experimental hysteretic behavior of in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls

  • Li, Sheng-Cai;Dong, Jian-Xi;Li, Li-Feng
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.95-112
    • /
    • 2012
  • In order to analyze the experimental hysteretic behavior of the in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls (RGMACBMW), we have carried out the pseudo static testing on the six specimens of RGMACBMW. Based on the test results and shear failure characteristics, the shear force hysteretic curves and displacement envelope curves of the models were obtained and discussed. On the basis of the hysteretic curves a general skeleton curve of the shear force and displacement was formed. The restoring model was adopted to analyze the seismic behavior and earthquake response of RGMACBMW. The deformation capacity of the specimens was discussed, and the formulas for calculating the lateral stiffness of the walls at different loading stages were proposed as well. The average lateral displacement ductility factor of RGMACBMW calculated based on the test results was 3.16. This value illustrates that if the walls are appropriately designed, it can fully meet the seismic requirement of the structures. The quadri-linear restoring models of the walls degradation by the test results accurately reflect the hysteretic behaviors and skeleton curves of the masonry walls. The restoring model can be applied to the RGMACBMW structure in earthquake response analysis.

Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model

  • Waris, Muhammad Bilal;Ishihara, Takeshi
    • Coupled systems mechanics
    • /
    • v.1 no.3
    • /
    • pp.247-268
    • /
    • 2012
  • A finite element model is developed for dynamic response prediction of floating offshore wind turbine systems considering coupling of wind turbine, floater and mooring system. The model employs Morison's equation with Srinivasan's model for hydrodynamic force and a non-hydrostatic model for restoring force. It is observed that for estimation of restoring force of a small floater, simple hydrostatic model underestimates the heave response after the resonance peak, while non-hydrostatic model shows good agreement with experiment. The developed model is used to discuss influence of heave plates and modeling of mooring system on floater response. Heave plates are found to influence heave response by shifting the resonance peak to longer period, while response after resonance is unaffected. The applicability of simplified linear modeling of mooring system is investigated using nonlinear model for Catenary and Tension Legged mooring. The linear model is found to provide good agreement with nonlinear model for Tension Leg mooring while it overestimates the surge response for Catenary mooring system. Floater response characteristics under different wave directions for the two types of mooring system are similar in all six modes but heave, pitch and roll amplitudes is negligible in tension leg due to high restraint. The reduced amplitude shall lead to reduction in wind turbine loads.

Non-Linear Response of a Semi-Submersible with Non-linear Restoring Forces (비선형 복원력을 가지는 반잠수식 해양구조물의 비선형 응답)

  • Jo, Hyo-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.123-130
    • /
    • 1994
  • 일반적으로 규칙파 또는 불규칙파중에서의 반잠수식 해양구조물의 응답을 추정할때, 선형계에 적합한 주파수 영역해석법을 사용하고 있다. 대다수의 해양구조물은 Lower Hull과 단면적이 일정한 Column으로 구성되어 있지만, 만약 Column의 단면적이 홀수에 따라 변화한다면 복원력항에 비선형계를 적용해야만 한다. 따라서 본 논문에서는 비선형 복원력을 고려한 반잠수식 해양구조물의 응답을 추정할 수 있는 시간 영역 해석법을 개발하였다. 그리고, Column형상이 다른 5개의 모델을 선정하여, 이들의 시간 영역 해석결과와 주파수 영역 해석 결과를 서로 비교하였다. 또한 파랑외력으로서 불규칙파를 적용할 때, 비선형 복원력이 해양구조물에 응답에 미치는 영향을 조사 하였다.

  • PDF