• Title/Summary/Keyword: Linear regression models

Search Result 939, Processing Time 0.027 seconds

Development of the Index for Estimating the Arc Status in the Short-circuiting Transfer Region of GMA Welding (GMA용접의 단락이행영역에 있어서 아크 상태 평가를 위한 모델 개발)

  • 강문진;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.85-92
    • /
    • 1999
  • In GMAW, the spatter is generated because of the variation of the arc state. If the arc state is quantitatively assessed, the control method to make the spatter be reduced is able to develop. This study was attempted to develop the optimal model that could estimate the arc state quantitatively. To do this, the generated spatters was captured under the limited welding conditions, and the waveforms of the arc voltage and of the welding current were collected. From the collected waveforms, the waveform factors and their standard deviations were produced, and the linear and non-linear regression models constituted using the factors and their standard deviations are proposed to estimate the arc state. the performance test to the proposed models was practiced. Obtained results are as follow. From the results of correlation analysis between the factors and the amount of the generated spatters, the standard deviations of the waveform factors have more the multiple regression coefficients than the waveform factors. Because the correlation coefficient between T and {TEX}$T_{a}${/TEX}, and s[T] and s[{TEX}$T_{a}${/TEX}] was nearly one, it was found that these factors have the same effect to the spatter generation. In the regression models to estimate the arc state, it was fond that the linear and the non linear models were also consisted of similar factors. In addition, the linear regression model was assessed the optimal model for estimating the arc state because the variance of data was narrow and multiple regression coefficient was highest among the models. But in the welding conditions which the amount of the generated spatters were small, it was found that the non linear regression model had better the estimation performance for the spatter generation than the linear.

  • PDF

ILL-CONDITIONING IN LINEAR REGRESSION MODELS AND ITS DIAGNOSTICS

  • Ghorbani, Hamid
    • The Pure and Applied Mathematics
    • /
    • v.27 no.2
    • /
    • pp.71-81
    • /
    • 2020
  • Multicollinearity is a common problem in linear regression models when two or more regressors are highly correlated, which yields some serious problems for the ordinary least square estimates of the parameters as well as model validation and interpretation. In this paper, first the problem of multicollinearity and its subsequent effects on the linear regression along with some important measures for detecting multicollinearity is reviewed, then the role of eigenvalues and eigenvectors in detecting multicollinearity are bolded. At the end a real data set is evaluated for which the fitted linear regression models is investigated for multicollinearity diagnostics.

Prediction Models of Residual Chlorine in Sediment Basin to Control Pre-chlorination in Water Treatment Plant (정수장 전염소 공정 제어를 위한 침전지 잔류 염소 농도 예측모델 개발)

  • Lee, Kyung-Hyuk;Kim, Ju-Hwan;Lim, Jae-Lim;Chae, Seon Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.601-607
    • /
    • 2007
  • In order to maintain constant residual chlorine in sedimentation basin, It is necessary to develop real time prediction model of residual chlorine considering water treatment plant data such as water qualities, weather, and plant operation conditions. Based on the operation data acquired from K water treatment plant, prediction models of residual chlorine in sediment basin were accomplished. The input parameters applied in the models were water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage. The multiple regression models were established with linear and non-linear model with 5,448 data set. The corelation coefficient (R) for the linear and non-linear model were 0.39 and 0.374, respectively. It shows low correlation coefficient, that is, these multiple regression models can not represent the residual chlorine with the input parameters which varies independently with time changes related to weather condition. Artificial neural network models are applied with three different conditions. Input parameters are consisted of water quality data observed in water treatment process based on the structure of auto-regressive model type, considering a time lag. The artificial neural network models have better ability to predict residual chlorine at sediment basin than conventional linear and nonlinear multi-regression models. The determination coefficients of each model in verification process were shown as 0.742, 0.754, and 0.869, respectively. Consequently, comparing the results of each model, neural network can simulate the residual chlorine in sedimentation basin better than mathematical regression models in terms of prediction performance. This results are expected to contribute into automation control of water treatment processes.

Testing the Equality of Two Linear Regression Models : Comparison between Chow Test and a Permutation Test

  • Um, Yonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.157-164
    • /
    • 2021
  • Regression analysis is a well-known statistical technique useful to explain the relationship between response variable and predictor variables. In particular, Researchers are interested in comparing the regression coefficients(intercepts and slopes) of the models in two independent populations. The Chow test, proposed by Gregory Chow, is one of the most commonly used methods for comparing regression models and for testing the presence of a structural break in linear models. In this study, we propose the use of permutation method and compare it with Chow test analysis for testing the equality of two independent linear regression models. Then simulation study is conducted to examine the powers of permutation test and Chow test.

Tilted beta regression and beta-binomial regression models: Mean and variance modeling

  • Edilberto Cepeda-Cuervo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.263-277
    • /
    • 2024
  • This paper proposes new parameterizations of the tilted beta binomial distribution, obtained from the combination of the binomial distribution and the tilted beta distribution, where the beta component of the mixture is parameterized as a function of their mean and variance. These new parameterized distributions include as particular cases the beta rectangular binomial and the beta binomial distributions. After that, we propose new linear regression models to deal with overdispersed binomial datasets. These new models are defined from the proposed new parameterization of the tilted beta binomial distribution, and assume regression structures for the mean and variance parameters. These new linear regression models are fitted by applying Bayesian methods and using the OpenBUGS software. The proposed regression models are fitted to a school absenteeism dataset and to the seeds germination rate according to the type seed and root.

Development of Medical Cost Prediction Model Based on the Machine Learning Algorithm (머신러닝 알고리즘 기반의 의료비 예측 모델 개발)

  • Han Bi KIM;Dong Hoon HAN
    • Journal of Korea Artificial Intelligence Association
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2023
  • Accurate hospital case modeling and prediction are crucial for efficient healthcare. In this study, we demonstrate the implementation of regression analysis methods in machine learning systems utilizing mathematical statics and machine learning techniques. The developed machine learning model includes Bayesian linear, artificial neural network, decision tree, decision forest, and linear regression analysis models. Through the application of these algorithms, corresponding regression models were constructed and analyzed. The results suggest the potential of leveraging machine learning systems for medical research. The experiment aimed to create an Azure Machine Learning Studio tool for the speedy evaluation of multiple regression models. The tool faciliates the comparision of 5 types of regression models in a unified experiment and presents assessment results with performance metrics. Evaluation of regression machine learning models highlighted the advantages of boosted decision tree regression, and decision forest regression in hospital case prediction. These findings could lay the groundwork for the deliberate development of new directions in medical data processing and decision making. Furthermore, potential avenues for future research may include exploring methods such as clustering, classification, and anomaly detection in healthcare systems.

Statistic Microwave Path Loss Modeling in Urban Line-of-Sight Area Using Fuzzy Linear Regression

  • Phaiboon, Supachai;Phokharatkul, Pisit;Somkurnpanit, Suripon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1249-1253
    • /
    • 2005
  • This paper presents a method to model the path loss characteristics in microwave urban line-of-sight (LOS) propagation. We propose new upper- and lower-bound models for the LOS path loss using fuzzy linear regression (FLR). The spread of upper- and lower-bound of FLR depends on max and min value of a sample path loss data while the conventional upper- and lower-bound models, the spread of the bound intervals are fixed and do not depend on the sample path loss data. Comparison of our models to conventional upper- and lower-bound models indicate that improvements in accuracy over the conventional models are achieved.

  • PDF

Traffic Accident Models of 3-Legged Signalized Intersections in the Case of Cheongju (3지 신호교차로의 교통사고 발생모형 - 청주시를 사례로 -)

  • Park, Byung-Ho;Han, Sang-Uk;Kim, Tae-Young
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.94-99
    • /
    • 2009
  • This study deals with the traffic accidents at the 3-legged signalized intersections in Cheongu. The goals are to analyze the geometric, traffic and operational conditions of intersections and to develop a various functional forms that predict the accidents. The models are developed through the correlation analysis, the multiple linear, the multiple nonlinear, Poisson and negative binomial regression analysis. In this study, two multiple linear, two multiple nonlinear and two negative binomial regression models were calibrated. These models were all analyzed to be statistically significant. All the models include 2 common variables(traffic volume and lane width) and model-specific variables. These variables are, therefore, evaluated to be critical to the accident reduction of Cheongju.

Multicollinarity in Logistic Regression

  • Jong-Han lee;Myung-Hoe Huh
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.303-309
    • /
    • 1995
  • Many measures to detect multicollinearity in linear regression have been proposed in statistics and numerical analysis literature. Among them, condition number and variance inflation factor(VIF) are most popular. In this study, we give new interpretations of condition number and VIF in linear regression, using geometry on the explanatory space. In the same line, we derive natural measures of condition number and VIF for logistic regression. These computer intensive measures can be easily extended to evaluate multicollinearity in generalized linear models.

  • PDF

Suppression for Logistic Regression Model (로지스틱 회귀모형에서의 SUPPRESSION)

  • Hong C. S.;Kim H. I.;Ham J. H.
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.701-712
    • /
    • 2005
  • The suppression for logistic regression models has been debated no longer than that for linear regression models since, among many other reasons, sum of squares for regression (SSR) or coefficient of determination ($R^2$) could be defined into various ways. Based on four kinds of $R^2$'s: two kinds are most preferred, and the other two are proposed by Liao & McGee (2003), four kinds of SSR's are derived so that the suppression for logistic models is explained. Many data fitted to logistic models are generated by Monte Carlo method. We explore when suppression happens, and compare with that for linear regression models.