• Title/Summary/Keyword: Linear proportional control

Search Result 180, Processing Time 0.021 seconds

DC Voltage Balancing Control of Half-Bridge PWM Inverter for Liniear Compressor of Refrigerator (냉장고의 선형압축기 구동을 위한 단상 하프브리지 인버터 시스템에서 직류단 불평형 보상에 관한 연구)

  • Kim, Ho-Jin;Kim, Hyeong-Jin;Kim, Dong-Youn;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.3
    • /
    • pp.256-262
    • /
    • 2017
  • This paper presents the control algorithm of a single-phase AC/DC/AC PWM converter for the linear compressor of a refrigerator. The AC/DC/AC converter consists of a full-bridge PWM converter for the control of the input power factor and a half-bridge PWM inverter for the control of the single-phase linear compressor. At the DC-link of this topology, two capacitors are connected in series. These DC-link voltages must be balanced for safe operation. Thus, a new control method of DC voltage balancing for the half-bridge PWM inverter is proposed. The balancing algorithm uses the Integral-Proportional controller and inserts the DC-offset current at the Proportional-Resonant current controller of the inverter to solve the DC-link unbalanced voltages between the two capacitors. The proposed algorithm can be easily implemented without much computation and additional hardware circuit. The usefulness of the proposed algorithm is verified through several experiments.

Fuzzy PID Controller Design for Tracking Control (퍼지PID제어를 이용한 추종 제어기 설계)

  • 김봉주;정정주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.68-68
    • /
    • 2000
  • This paper presents a fuzzy modified PID controller that uses linear fuzzy inference method. In this structure, the proportional and derivative gains vary with the output of the system under control. 2-input PD type fuzzy controller is designed to obtain the varying gains. The proposed fuzzy PID structure maintains the same performance as the general-purpose linear PID controller, and enhances the tracking performance over a wide range of input. Numerical simulations and experimental results show the effectiveness of the fuzzy PID controller in comparison with the conventional PID controller.

  • PDF

Dynamic Characteristics of Proportional Flow Control Valve with Large Capacity (대용량 비례 유량제어밸브 동특성 분석)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.20-27
    • /
    • 2010
  • Electromagnetic control valves have been used for almost 20 years. As the solenoid modulating technology advances, its applications are extending to various industrial fields such as nuclear and fossil fuel power plants, chemical plants and refineries. Proportional solenoid valve for large flow control is designed with two-stage configuration to meet the required actuating force on the main disc and its position is stabilized by the self-controlled system. In this research, main disc dynamics is analyzed with linearized system model which is derived from the mathematical equations describing its nonlinear behavior. Major design parameters of the valve control system that affect the response and stability are also studied with root locus method. The linear dynamic analysis results are verified with simulations in time-domain.

  • PDF

Multiobjective PI/PID Control Design Using an Iterative Linear Matrix Inequalities Algorithm

  • Bevrani, Hassan;Hiyama, Takashi
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.117-127
    • /
    • 2007
  • Many real world control systems usually track several control objectives, simultaneously. At the moment, it is desirable to meet all specified goals using the controllers with simple structures like as proportional-integral (PI) and proportional-integral-derivative (PID) which are very useful in industry applications. Since in practice, these controllers are commonly tuned based on classical or trial-and-error approaches, they are incapable of obtaining good dynamical performance to capture all design objectives and specifications. This paper addresses a new method to bridge the gap between the power of optimal multiobjective control and PI/PID industrial controls. First the PI/PID control problem is reduced to a static output feedback control synthesis through the mixed $H_2/H_{\infty}$ control technique, and then the control parameters are easily carried out using an iterative linear matrix inequalities (ILMI) algorithm. Numerical examples on load-frequency control (LFC) and power system stabilizer (PSS) designs are given to illustrate the proposed methodology. The results are compared with genetic algorithm (GA) based multiobjective control and LMI based full order mixed $H_2/H_{\infty}$ control designs.

Design of PD Observers in Descriptor Linear Systems

  • Wu, Ai-Guo;Duan, Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.93-98
    • /
    • 2007
  • A class of new observers in descriptor linear systems, proportional-derivative(PD) observers, are proposed. A parametric design approach for such observers is proposed based on a complete parametric solution to the generalized Sylvester matrix equation. The approach provides complete parameterizations for all the observer gains, gives the parametric expression for the corresponding left eigenvector matrix of the observer system matrix, realizes elimination of impulsive behaviors, and guarantees the regularity of the observer system.

Friction Torque Analysis of a Hydraulic Motor-Load System using Proportional Control Valve (비례제어밸브를 이용한 유압모터 부하계의 마찰토크 해석)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.760-766
    • /
    • 2010
  • In this paper, The static friction torque and viscous friction torque including hydraulic motor-load system driven by hydraulic proportional control valve analysis. The basic experimental was performed toward characteristic in pressure and flow rate in hydraulic system energy. The variable of friction torque was experiment on brake pressure variable using pneumatic brake system. The analysis of nonlinear friction and linear friction was perform ed toward friction characteristic of hydraulic system.

Design of Guidance and Control System for X-plane Submarine (X타 수중함의 유도·제어시스템 설계)

  • Park, Jong-Yong;You, Youngjun;Jeon, Myungjun;Yoon, Hyeon-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.306-313
    • /
    • 2022
  • Most submarines use the cross-plane, which is convenient and inexpensive, but the number of submarines equipped with an X-plane is increasing recently. This study focuses on designing the control system of the X-plane submarine with various control methods and analyzing the effect of each controller. First, a maneuvering simulation environment for a subjected submarine is established. The dynamics and the operating range of control surfaces are considered. Second, a depth and heading control system of the submarine, which can be divided into three parts, is designed: guidance, controller, and control allocation. The guidance system generates a smooth desired depth and heading. The controller is designed using Proportional-Integral-Differential (PID), Linear Quadratic Regulator (LQR), and H-infinity (H∞) control methods. A linear control allocation method is used to distribute control moment calculated by the controller to the control surfaces. Finally, the designed control system is applied to a subjected X-plane submarine, and a depth and heading control simulations are performed. Each control method is compared and analyzed under various simulation conditions.

Analytical study of house wall and air temperature transients under on-off and proportional control for different wall type

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.1
    • /
    • pp.70-81
    • /
    • 2010
  • A mathematical model is formulated to study the effect of wall mass on the thermal performance of four different houses of different construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one -dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. These discrete data are then converted to a continuous, time dependent form using a Fast Fourier Transform method. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. A computer code is developed to calculate the wall temperature profile, room air temperature, and energy consumption loads. Three sets of results are calculated one for no auxiliary energy and two for different control mechanism -- an on-off controller and a proportional controller. Comparisons are made for the cases of two controllers. Heavy weight houses with insulation in mild weather areas (such as August in Santa Maria, California) show a high comfort level. Houses using proportional control experience a higher comfort level in comparison to houses using on-off control. The result shows that there is an effect of mass on the thermal performance of a heavily constructed house in mild weather conditions.

Linearizing and Control of a Three-phase Photovoltaic System with Feedback Method and Intelligent Control in State-Space

  • Louzazni, Mohamed;Aroudam, Elhassan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.297-304
    • /
    • 2014
  • Due to the nonlinearity and complexity of the three-phase photovoltaic inverter, we propose an intelligent control based on fuzzy logic and the classical proportional-integral-derivative. The feedback linearization method is applied to cancel the nonlinearities, and transform the dynamic system into a simple and linear subsystem. The system is transformed from abc frame to dq0 synchronous frame, to simplify the state feedback linearization law, and make the close-loop dynamics in the equivalent linear model. The controls improve the dynamic response, efficiency and stability of the three-phase photovoltaic grid system, under variable temperature, solar intensity, and load. The intelligent control of the nonlinear characteristic of the photovoltaic automatically varies the coefficients $K_p$, $K_i$, and $K_d$ under variable temperature and irradiation, and eliminates the oscillation. The simulation results show the advantages of the proposed intelligent control in terms of the correctness, stability, and maintenance of its response, which from many aspects is better than that of the PID controller.

Design of Fuzzy-Power Controller for a Pump with Electric Proportional Valve (절자 비례 밸브를 갖는 펌프의 퍼지-동력제어기 설계)

  • 전순용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.441-447
    • /
    • 1998
  • Motivated by a recent work, a fuzzy-power-controller(FPC) is designed for the relieving-horsepower control of output variable pump with electrical proportional valve and actually implemented on the industrial excavator. In order to calculate the output power of pump with input of FPC, a linear discrete time model of load system to pump is obtained and the result is applied to control the engine-pump coupled system by software without pressure and flow sensor. The FPC controls the engine and pump coupled system by relieving horsepower control according to the change of load and the running conditions in relieving horsepower control are selected by fuzzy inference engine. A case study is peformed through the construction of the control device and installation on the excavator. It shows that the relieving-horsepower control system with the FPC, as suggested in this paper, is superior to the conventional PID controllers. And also, the excavator, with the FPC, shows that the power-loss of the coupled system is reduced and the running speed of the hydraulic actuator is enhanced.

  • PDF