• 제목/요약/키워드: Linear positioning system

검색결과 219건 처리시간 0.024초

압전 구동기와 레버 링키지를 이용한 6 자유도 스테이지의 비선형성 평가에 기초한 정밀 위치 제어기의 설계 (Precision Position Controller Design for a 6-DOF Stage with Piezoelectric Actuators and Lever Linkages Based on Nonlinearity Estimation)

  • 문준희;이봉구
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1045-1053
    • /
    • 2009
  • Precision stages for 6-DOF positioning, actuated by PZT stacks, which are fed back by gap sensors and guided by flexure hinges, have enlarged their application territory in micro/nano manufacturing and measurement area. The precision stages inherently have such limitations as the nonlinearity between input and output in piezoelectric stacks, feedback signal noise in precision capacitive gap sensors and low material damping in precision kinematic linkages of mechanical flexures. To surmount these limitations, the precision stage is modeled with physics-based variables, which are identified by transient response correspondence, and a gain margin calculation algorithm using the Prandtl-Ishlinskii model and describing function is newly developed to assess system performance more precisely than linear controller design schemes. Based on such analyses, a precision positioning controller is designed. Excellent positioning accuracy with rapid settlement accomplished by the controller is shown in step responses of the closed-loop system.

Design the Autopilot System of using Fuzzy Algoritim

  • Kim, Young-Hwi;Bae, Gyu-Han;Park, Jae-Hyung;Kang, Sin-Chool;Lee, Ihn-Yong;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.296-300
    • /
    • 2003
  • The autopilot system targets decreasing labor, working environment improvement, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization. Dynamic Ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And Load Condition of ship as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that is disturbance act in non-linear from, become factor who make serv ice of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using fuzzy algorithm ,Design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

Kalman Filter-based Navigation Algorithm for Multi-Radio Integrated Navigation System

  • Son, Jae Hoon;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권2호
    • /
    • pp.99-115
    • /
    • 2020
  • Since GNSS is easily affected by jamming and/or spoofing, alternative navigation systems can be operated as backup system to prepare for outage of GNSS. Alternative navigation systems are being researched over the world, and a multi-radio integrated navigation system using alternative navigation systems such as KNSS, eLoran, Loran-C, DME, VOR has been researched in Korea. Least Square or Kalman filter can be used to estimate navigation parameters in the navigation system. A large number of measurements of the Kalman filter may lead to heavy computational load. The decentralized Kalman filter and the federated Kalman filter were proposed to handle this problem. In this paper, the decentralized Kalman filter and the federated Kalman filter are designed for the multi-radio integrated navigation system and the performance evaluation result are presented. The decentralized Kalman filter and the federated Kalman filter consists of local filters and a master filter. The navigation parameter is estimated by local filters and master filter compensates navigation parameter from the local filters. Characteristics of three Kalman filters for a linear system and nonlinear system are investigated, and the performance evaluation results of the three Kalman filters for multi-radio integrated navigation system are compared.

CONVERTER DESIGN AND CONTROL OF PIEZOELECTRIC ACTUATORS IN SLIDING MODE OPERATION

  • Palis F.;Heller D.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.785-789
    • /
    • 2001
  • Piezoelectric actuators are characterized by non-linear dynamics and high frequency oscillations of the piezocrystal. Both properties have to be taken into consideration when optimizing real time systems. Taking benefit of the almost linear behaviour between charge and strain, current source fed piezoelectric actuators are given preference for high dynamic applications. Here special emphasis is put on current sources for multi-actuator systems and the controller design for optimal system integration of the actuator. It is shown that sliding mode operation of the converter system offers good possibilities to guaranty high accuracy and dynamics of the actuators system. The presented multi-actuator system is used for positioning and vibration damping in flexible mechanical systems.

  • PDF

Design Optimization and Development of Linear Brushless Permanent Magnet Motor

  • Chung, Myung-Jin;Gweon, Dae-Gab
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.351-357
    • /
    • 2003
  • A method of design optimization for minimization of force ripple and maximization of thrust force in a linear brushless permanent magnet motor without finite element analysis is represented. The design optimization method calculated the driving force in the function of electric and geometric parameters of a linear brushless PM motor using the sequential quadratic programming method. Using electric and geometric parameters obtained by this method, the normalized force ripple is reduced 7.7% (9.7% to 2.0%) and the thrust force is increased 12.88N (111.55N to 124.43N) compared to those not using design optimization.

Improvement of Tracking Accuracy of Positioning Systems with Iron Core Linear DC Motors

  • Song, Chang-Kyu;Kim, Gyung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권1호
    • /
    • pp.31-35
    • /
    • 2005
  • Higher productivity requires high-speed motion of machine tool axes. The iron core linear DC motor (LDM) is widely accepted as a viable candidate for high-speed machine tool feed unit. LDM, however, has two inherent disturbance force components, namely cogging and thrust force ripple. These disturbance forces directly affect the tracking accuracy of the feeding system and must be eliminated or reduced. In order to reduce motor ripple, this research adapted the feedforward compensation method and neural network control. Experiments carried out with the linear motor test setup show that these control methods are effective in reducing motor ripple.

외란관측기를 이용한 리니어 서보메커니즘의 최적튜닝 (Optimal Tuning of Linear Servomechanisms using a Disturbance Observer)

  • 홍승환;정성종
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.926-931
    • /
    • 2008
  • In order to design a high-performance controller with excellent positioning and tracking performance, an optimal tuning method based on the integrated design concept is studied. DOBs, feedforward controllers and CCC are applied to control the bi-axial linear servomechanism. To derive accurate dynamic models of mechanical subsystems equipped with linear servos for the integrated tuning, system identification processes are conducted through the sine sweeping. An optimal tuning problem with stability, robustness and overshoot constraints is formulated as a nonlinear constrained optimization problem. Optimal gains are obtained through the SQP method. Experimental results confirm that both tracking and contouring errors are significantly reduced by applying the proposed controller and integrated tuning method.

  • PDF

선형 펄스 전동기의 특성 해석 (The Charcteristics Analysis of Linear Pulse Motor)

  • 조윤현;이광호;김성도
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권5호
    • /
    • pp.249-256
    • /
    • 1999
  • This paper describes static characteristics analysis of linear pulse motor(LPM) with two permanent magnets. Linear pulse motors are finding a wide range of application for the Factory-Automation or the Office-Automation. Typically, LPM provides for a reliable and precise control of position, velocity, or acceleration without using a closed-loop system. Some of the advantages of LPMs are ease of control, step multiplication, static and dynamic positioning, and locking force. The flux density and thrust of LPM is computed by the FEM and magnetic equivalent circuits which considered the magnetic nonlinear phenomena. The result of characteristics analysis are shown as the flux, the air gap reluctance and the thrust. The velocity and position characteristics as a function of unit step input is measured. To estimate the unit step response charecteristic of LPM, the simulation results by Matlab and the experimental results is compared.

  • PDF

선형 동기 모터의 정밀모션 제어 (High-accuracy Motion Control of Linear Synchronous Motor)

  • 정승현;성준엽;박정일
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, the pole placement controller based on the Robust Internal-loop Compensator (RIC) structure, which has inherent structural equivalence to disturbance observer, is proposed to control a linear positioning system. This controller has the advantage to easily select controller gains by using pole placement without loss of that of original RIC structure. The principal is to construct the pole placement controller for a nominal internal model instead of unknown real plant. Using linear motion experiment showed the effectiveness of the proposed controller.

Development of the KASS Multipath Assessment Tool

  • Cho, SungLyong;Lee, ByungSeok;Choi, JongYeoun;Nam, GiWook
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권4호
    • /
    • pp.267-275
    • /
    • 2018
  • The reference stations in a satellite-based augmentation system (SBAS) collect raw data from global navigation satellite system (GNSS) to generate correction and integrity information. The multipath signals degrade GNSS raw data quality and have adverse effects on the SBAS performance. The currently operating SBASs (WAAS and EGNOS, etc.) survey existing commercial equipment to perform multipath assessment around the antennas. For the multi-path assessment, signal power of GNSS and multipath at the MEDLL receiver of NovAtel were estimated and the results were replicated by a ratio of signal power estimated at NovAtel Multipath Assessment Tool (MAT). However, the same experiment environment used in existing systems cannot be configured in reference stations in Korean augmentation satellite system (KASS) due to the discontinued model of MAT and MEDLL receivers used in the existing systems. This paper proposes a test environment for multipath assessment around the antennas in KASS Multipath Assessment Tool (K-MAT) for multipath assessment. K-MAT estimates a multipath error contained in the code pseudorange using linear combination between the measurements and replicates the results through polar plot and histogram for multipath assessment using the estimated values.