• Title/Summary/Keyword: Linear operational transconductance amplifier

Search Result 17, Processing Time 0.024 seconds

A BiCMOS linear Operational Transconductance Amplifier (BiCMOS 선형 OTA)

  • 박지만;소재환;류남규;정원섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.135-141
    • /
    • 1994
  • A linear BiCMOS operational transconductance amplifier (OTA) is described. It consists of a CMOS linear transconductor and a bipolar translineear current gain cell followed by three CMOS current mirrors. The proposed circuit has comparable linearity and temperature stability but superior dc characteristics to its bipolar counterpart. A test circuit with a transconductance of 47.3$\mu$s has been simulated. Simulation results show that a linearity error of less than $\pm$1 percent over an input volgate range from -1.0 to 1.0 V and a output dc offset current as small as-3.6 nA can be obtained.

  • PDF

A Simple Bridge Resistance Deviation-to-Frequency Converter for Intelligent Resistive Transducers (지능형 저항성 변환기를 위한 간단한 브리지 저항 편차-주파수 변환기)

  • Lee, Po;Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.167-171
    • /
    • 2008
  • A bridge resistance deviation-to-frequency (BRD-to-F) converter is presented for interfacing resistive sensor bridges. It consists of a linear operational transconductance amplifier (LOTA), a current-controlled oscillator (CCO). The prototype converter was simulated using commercially available discrete components. The result shows that the converter has a conversion sensitivity amounting to 16.90 kHz/${\Omega}$ and a linearity error less than ${\pm}$0.03 %.

  • PDF

A Design of LC-tuned Sinusoidal VCOs Using OTA-C Active Inductors

  • Chung, Won-Sup;Son, Sang-Hee
    • Journal of IKEEE
    • /
    • v.11 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • Sinusoidal voltage-controlled oscillators (VCOs) based on Colpitts and Hartley oscillators are presented. They consist of a LC parallel-tuned circuit connected in a negative-feedback loop with an OTA-R amplifier and two diode limiters, where the inductor is simulated one realized with temperature-stable linear operational transconductance amplifiers (OTAs) and a grounded capacitor. Prototype VCOs are built with discrete components. The Colpitts VCO exhibits less than 1% nonlinearity in its current-to-frequency transfer characteristic from 4.2 to 21.7 MHz and ${\pm}$95 ppm/$^{\circ}C$ temperature drift of frequency over 0 to $70^{\circ}C$. The total harmonic distortion (THD) is as low as 2.92% with a peak-to-peak amplitude of 0.7 V for a frequency-tuning range of 10.8-32 MHz. The Hartley VCO has the temperature drift and THD of two times higher than those of the Colpitts VCO.

  • PDF

A Design of Novel Instrumentation Amplifier Using a Fully-Differential Linear OTA (완전-차동 선형 OTA를 사용한 새로운 계측 증폭기 설계)

  • Cha, Hyeong-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.1
    • /
    • pp.59-67
    • /
    • 2016
  • A novel instrumentation amplifier (IA) using fully-differential linear operational transconductance amplifier (FLOTA) for electronic measurement systems with low cost, wideband, and gain control with wide range is designed. The IA consists of a FLOTA, two resistor, and an operational amplifier(op-amp). The principal of the operating is that the difference of two input voltages applied into FLOTA converts into two same difference currents, and then these current drive resistor of (+) terminal and feedback resistor of op-amp to obtain output voltage. To verify operating principal of the IA, we designed the FLOTA and realized the IA used commercial op-amp LF356. Simulation results show that the FLOTA has linearity error of 0.1% and offset current of 2.1uA at input dynamic range ${\pm}3.0V$. The IA had wide gain range from -20dB to 60dB by variation of only one resistor and -3dB frequency for the 60dB was 10MHz. The proposed IA also has merits without matching of external resistor and controllable offset voltage using the other resistor. The power dissipation of the IA is 105mW at supply voltage of ${\pm}5V$.

Bridge Resistance Deviation-to-Period Converter for Resistive Biosensors (저항형 바이오 센서를 위한 브릿지 저항 편차-주기 변환기)

  • Chung, Won-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.40-44
    • /
    • 2014
  • A bridge resistance deviation-to-period (BRD-to-P) converter is presented for interfacing resistive biosensors. It consists of a linear operational transconductance amplifier (OTA) and a current-controlled oscillator (CCO) formed by a current-tunable Schmitt trigger and an integrator. The free running period of the converter is 1.824 ms when the bridge offset resistance is $1k{\Omega}$. The conversion sensitivity of the converter amounts to $3.814ms/{\Omega}$ over the resistance deviation range of $0-1.2{\Omega}$. The linearity error of the conversion characteristic is less than ${\pm}0.004%$.

Design of CMOS OTA-C Integrator with a Wide Linear Input Range

  • Shin, Yun-Tae;Ahn, Joung-Cheol;Shin, Kyoo-Jae;Kim, Dong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.465-468
    • /
    • 1988
  • A n-well CMOS Operational Transconductance Amplifier -C(OTA-C) integrator with a wide linear input range is designed. The circuit designed has superior linearity of input voltage range compared with the conventional source-coupled pair OTA. The OTA developed in this paper is versatile in application: diverse applications are in the fields of linear amplifiers, continuous-time filters, gain control circuits, and analog multipliers, etc..

  • PDF

The Study about the New Method of Interface Circuit Design for Variable Resistive Sensors (가변형 저항 센서를 위한 새로운 방식의 인터페이스 회로 설계에 관한 연구)

  • 김동용;박지만;차형우;정원섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.749-752
    • /
    • 1999
  • A new interface circuit for variable resistive sensors is proposed. The interface circuit compose of only two strain gages, a voltage-to-current converter, and current mirror with two outputs. A new dual slope A/D converter based on linear operational transconductance amplifier for the testing of prototype interface circuit is also described. The theory of operation is presented and experimental results are used to verify the theoretical predictions. The results show close agreement between predicted behaviour and experimental performance.

  • PDF

Low-Voltage Tunable Pseudo-Differential Transconductor with High Linearity

  • Galan, Juan Antonio Gomez;Carrasco, Manuel Pedro;Pennisi, Melita;Martin, Antonio Lopez;Carvajal, Ramon Gonzalez;Ramirez-Angulo, Jaime
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.576-584
    • /
    • 2009
  • A novel tunable transconductor is presented. Input transistors operate in the triode region to achieve programmable voltage-to-current conversion. These transistors are kept in the triode region by a novel negative feedback loop which features simplicity, low voltage requirements, and high output resistance. A linearity analysis is carried out which demonstrates how the proposed transconductance tuning scheme leads to high linearity in a wide transconductance range. Measurement results for a 0.5 ${\mu}m$ CMOS implementation of the transconductor show a transconductance tuning range of more than a decade (15 ${\mu}A/V$ to 165 ${\mu}A/V$) and a total harmonic distortion of -67 dB at 1 MHz for an input of 1 Vpp and a supply voltage of 1.8 V.

Low-voltage high-linear bipolar OTA and its application to IF bandpass Filter (저전압 고선형 바이폴라 OTA와 이를 이용한 IF 대역통과 필터)

  • Chung, Won-Sup;Son, Sang-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.37-44
    • /
    • 2007
  • A low-voltage high-linear bipolar OTA and its application to IF bandpass filter for GSM cellular telephone are presented. The OTA consists of a low-voltage linear transconductor, a translinear current gain cell, and three current mirrors. The bandpass filter is composed of two cascaded identical second-order bandpass filters, which consist of a resistor, a capacitor, and a grounded simulated inductor realized with two OTA's and a grounded capacitor. SPICE simulations using an 8 GHz bipolar transistor-array parameter show that the OTA with a transconductance of 1 mS exhibits a linearity error of less than ${\pm}2%$ over an input voltage range of ${\pm}0.65\;V$ at supply voltages of ${\pm}2.0\;V$. Temperature coefficient of the transconductance is less than $-90ppm/^{\circ}C$. The bandpass filter has a center frequency of 85 MHz and Q-factor of 80. Temperature coefficient of the center frequency is less than $-182ppm/^{\circ}C$. The power dissipation of the filter is 128 mW.

A Constant-gm Global Rail-to-Rail Operational Amplifier with Linear Relationship of Currents (전영역에서 선형 전류 관계를 갖는 일정 트랜스컨덕턴스 연산 증폭기의 설계)

  • Jang, Il-Gwon;Gwak, Gye-Dal;Park, Jang-U
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.29-36
    • /
    • 2000
  • The principle and design of two-stage CMOS operational amplifier with rail-to-rail input and class-AB output stage is presented. The rail-to-rail input stage shows almost constant transconductance independent of the common mode input voltage range in global transistor operation region. This new technique does not make use of accurate current-voltage relationship of MOS transistors. Hence it was achieved by using simple linear relationship of currents. The simulated transconductance variation using SPICE is less the 4.3%. The proposed global two-stage opamp can operate both in strong inversion and in weak inversion. Class AB output stage proposed also has a full output voltage swing and a well-defined quiescent current that does not depend on power supply voltage. Since feedback class- AB control is used, it is expected that this output stage can be operating in extremely low voltage. The variation of DC-gain and unity-gain frequency is each 4.2% and 12%, respectively.

  • PDF