• Title/Summary/Keyword: Linear motion accuracy

Search Result 256, Processing Time 0.025 seconds

Development of an Accuracy Simulation Technology for Mechanical Machines (기계장비 정밀도 시뮬레이션 기술 개발)

  • Park, Chun-Hong;Hwang, Joo-Ho;Lee, Chan-Hong;Song, Chang-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.259-264
    • /
    • 2011
  • Authors are carrying out a national project which develops an accuracy simulation technology of mechanical machines to predict the stiffness and accuracy of machine components or entire machine in the design stage. Analysis methods in this technology are generalized to achieve the wide applicability and to be utilized as a web based platform type. In this paper, outline of the project such as concept, aim and configuration is introduced. Contents of the research are also introduced, which are composed of four main research fields; structural dynamics, linear motion analysis, rotary motion analysis and control and vibration analysis. Finally, a future plan is presented which is made up with three stages for the advance toward an ultimate manufacturing tools.

Organizartion of Measurin System of Circular Motion Accuracy of Machining Center (머시닝센터의 원운동정도 측정시스템의 구성)

  • 김영석;낭궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.305-311
    • /
    • 1993
  • In recent years, it has been variously developed for testing the accuracy of circular motion of NC machine tools, for example Telescoping Ball Bar Method by Bryan,Circular Test Method by Knapp and r $_{- \theta}$ Mathod by Tsutsumi etc., but it is not yet settled in the code of measuring methods of motion errors of NC machine tools, because of errors of measuring units and sensors, and also especially the difficulties of centering of measuring units. In this paper, in use of magnetic type linear scale with resolution of 0.5 .mu. m and tick pulses come out from computer, it has become possible for detecting of linear displacement of radial errors and measuring of revolution angle of circular motion of NC machine tools.

  • PDF

The Organization of Measuring Systems of Linear Cycle Plane Positioning Accuracy on NC Lathes (NC 선반에서 직선 사이클 평면 위치결정 정도 측정 시스템의 구성)

  • 김영석;김재열;송인석;곽이구;정정표;한지희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.387-392
    • /
    • 2002
  • It is very important to measure linear cycle plane positioning accuracy of NC lathes as they affect those of all other machines machined by them in industries. For example, if the linear cycle plane positioning accuracy of each axes directions is bad, the accuracy of works will be wrong and the change-ability will be bad in the assembly of machine parts. In this paper, computer software systems are organized to measure linear displacements of ATC(Automatic tool changer) of NC lathes using linear scale and time pulses comming out from computer in order to get data at constant time intervals from the sensors. And each sets of error data gotten from the test is expressed to plots by computer treatment and the results of linear cycle plane positioning error motion estimated to numerics by statistical treatments.

  • PDF

Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Table (유정압테이블의 정밀도향상을 위한 수정가공 알고리즘)

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Hu-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.62-69
    • /
    • 2002
  • For improving the motion accuracy of hydrostatic table, corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. reverse analysis is performed firstly to estimate rail profile from measured linear and angular motion error, in the algorithm. For the next step, corrective machining information is decided as referring to the estimating rail profile. Finally, motion errors on correctively machined rail are analized by using motion error analysis method proposed in the previous paper. These processes can be iterated until the analized motion errors are satisfied with target accuracy. In order to verify the validity of the algorithm theoretically, motion errors by the estimated rail, after corrective machining, are compared with motion errors by true rail assumed as the measured value. Estimated motion errors show good agreement with assumed values, and it is confirmed that the algorithm is effective to acquire the corrective machining information to improve the accuracy of hydrostatic table.

Mathematical Modeling of Friction Force in LM Ball Guides (LM 볼가이드 마찰력의 수학적 모델링)

  • Oh, Kwang-Je;Khim, Gyungho;Park, Chun-Hong;Chung, Sung-Chong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.423-429
    • /
    • 2015
  • Linear motion (LM) ball guides have good accuracy and high efficiency. They are widely applied for precision machinery such as machine tools, semiconductor fabrication machines and robots. However, friction force incurs heat between the balls and grooves. Thermal expansion due to the heat deteriorates stiffness and accuracy of the LM ball guides. For accurate estimation of stiffness and accuracy during the linear motion, friction models of LM ball guides are required. To formulate accurate frictional models of LM ball guides according to load and preload conditions, rolling and viscous frictional analyses have been performed in this paper. Contact loads between balls and grooves are derived from Hertzian contact analysis. Contact angle variation is incorporated for the precision modeling. Viscous friction model is formulated from the shear stress of lubricant and the contact area between balls and grooves. Experiments confirm validity of the developed friction model for various external load and feedrate conditions.

Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Bearing Tables

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Husang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.60-67
    • /
    • 2004
  • For improving the motion accuracy of hydrostatic tables, a corrective machining algorithm is proposed in this paper. The algorithm consists of three main processes. The reverse analysis is performed firstly to estimate the rail profile from the measured linear and angular motion error, in the algorithm. For the next step, the corrective machining information is obtained based upon the estimated rail pronto. Finally, the motion errors on the correctively machined rail are analyzed by using the motion error analysis method. These processes are iterated until the analyzed motion errors are satisfactory within the target accuracy. In order to verify the validity of the algorithm theoretically, the motion errors calculated by the estimated rail after the corrective machining process, are compared with those by the true rail which is previously assumed as the initially measured value. The motion errors calculated using the estimated rail show good agreement with the assumed values, and it is shown that the algorithm is effective in acquiring the corrective machining information to improve the accuracy of hydrostatic tables.

Experimental Verification on the Corrective Machining Algorithm for Improving the Motion Accuracy of Hydrostatic Bearing Tables

  • Park, Chun-Hong;Lee, Chan-Hong;Lee, Husang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.62-68
    • /
    • 2004
  • Effectiveness of a corrective machining algorithm, which can construct the proper machining information to improve motion errors utilizing measured motion errors, is verified experimentally in this paper, Corrective machining process is practically applied to single and double side hydrostatic bearing tables. Lapping process is applied as a machining method. The machining information is obtained from the measured motion errors by applying the algorithm, without any information on the rail profile. In the case of the single-side table, after 3 times of corrective remachining, linear and angular motion errors are improved up to 0.13 $\mu\textrm{m}$ and 1.40 arcsec from initial error of 1.04 $\mu\textrm{m}$ and 22.71 arcsec, respectively. In the case of the double-side table, linear and angular motion error are improved up to 0.07 /$\mu\textrm{m}$ and 1.42 arcsec from the initial error of 0.32 $\mu\textrm{m}$ and 4.14 arcsec. The practical machining process is performed by an unskilled person after he received a preliminary training in machining. Experimental results show that the corrective machining algorithm is very effective and easy to use to improve the accuracy of hydrostatic tables.

Dynamic Characteristics of Linear Motion Supported by Rolling Ball Bearings (볼 베어링을 사용하는 선형 운동 가이드의 동적 특성)

  • Choi Jae Seok;Yi Yong-sub;Kim Yoon Young;Lee Dong Jin;Lee Sung Jin;Yoo Jeonghoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.868-876
    • /
    • 2004
  • The linear motion(LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been widely used to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analyses. Linear analysis is accomplished by Lagrange equation and the finite element method. And another trial that performs nonlinear analysis about one mode(bouncing mode) of LM guide from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

Development of a Linear Motor Dynamometer for Positioning Control Performance Test (Linear모터의 위치 제어 성능 시험을 위한 Dynamometer 개발)

  • Roh Chang-Yul;Rho Myung-Hwan;Kim Ju-Kyung;Park Jong-Jin;Lee Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.609-614
    • /
    • 2006
  • Recently linear motor has been used mainly for high speed feeding performance of machine tools. The advantages of linear motor are not only high speed but high accuracy, because it is not required the coupling and ballscrew for converting rotary to liner motion. Before applying in different moving system, the dynamometer is necessary to test the performance. In Korea, the linear motor is producing in a couple of company However, the liner motor dynamometer is not commercialized yet, like as rotary motor dynamometer. In this paper, a linear motor dynamometer is designed and manufactured using a MR damper. The dynamometer system developed in this study could be used for testing the positioning accuracy fur different loading conditions, traction forces, dynamic performance and so on.

A Study on the Deflection of Rail by Bolt Tightening (볼트 체결에 의한 직선운동베어링 레일 변형에 관한 연구)

  • 김태범;이상조;김익수;이위로
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.794-797
    • /
    • 2001
  • The basic design of today s rolling linear guides with rails is outlined in a French patent from 1932, it was not until the early 1970s that linear guides were commercialized. Progress with the numerical control of machine tools led to higher speed and accuracy of machines that exposed limitations of conventional sliding guides in terms of durability and response capability. As a result, rolling guides, having better high-speed performance and greater compatibility with electronics, began to be used widely. This paper examined theoretically and experimentally the influence of rail bolt tightening on the motion accuracy of linear guides. The rail of a linear guide is tightened and fixed to the base component by bolts. Naturally, the rail is an elastic body and the compression force generated by tightening the volts causes its deflection. Compromising motion accuracy, the rail deforms wavily in a longitudinal direction corresponding to the bolt pitch. The relation between rail position and deflection(sinking) amount caused by bolt tightening was analyzed through FEM analysis in this paper.

  • PDF