• 제목/요약/키워드: Linear mixed normal model

검색결과 22건 처리시간 0.019초

Genetic Parameter Estimation with Normal and Poisson Error Mixed Models for Teat Number of Swine

  • Lee, C.;Wang, C.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권7호
    • /
    • pp.910-914
    • /
    • 2001
  • The teat number of a sow plays an important role for weaning pigs and has been utilized in selection of swine breeding stock. Various linear models have been employed for genetic analyses of teat number although the teat number can be considered as a count trait. Theoretically, Poisson error mixed models are more appropriate for count traits than Normal error mixed models. In this study, the two models were compared by analyzing data simulated with Poisson error. Considering the mean square errors and correlation coefficients between observed and fitted values, the Poisson generalized linear mixed model (PGLMM) fit the data better than the Normal error mixed model. Also these two models were applied to analyzing teat numbers in four breeds of swine (Landrace, Yorkshire, crossbred of Landrace and Yorkshire, crossbred of Landrace, Yorkshire, and Chinese indigenous Min pig) collected in China. However, when analyzed with the field data, the Normal error mixed model, on the contrary, fit better for all the breeds than the PGLMM. The results from both simulated and field data indicate that teat numbers of swine might not have variance equal to mean and thus not have a Poisson distribution.

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.

Dirichlet Process Mixtures of Linear Mixed Regressions

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.625-637
    • /
    • 2015
  • We develop a Bayesian clustering procedure based on a Dirichlet process prior with cluster specific random effects. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet process was implemented to calculate posterior probabilities when the number of clusters was unknown. Our approach (unlike its counterparts) provides simultaneous partitioning and parameter estimation with the computation of the classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. We find that the proposed Dirichlet process mixture model with cluster specific random effects detects clusters sensitively by combining vague edges into different clusters. Examples are given to show how these models perform on real data.

A spatial heterogeneity mixed model with skew-elliptical distributions

  • Farzammehr, Mohadeseh Alsadat;McLachlan, Geoffrey J.
    • Communications for Statistical Applications and Methods
    • /
    • 제29권3호
    • /
    • pp.373-391
    • /
    • 2022
  • The distribution of observations in most econometric studies with spatial heterogeneity is skewed. Usually, a single transformation of the data is used to approximate normality and to model the transformed data with a normal assumption. This assumption is however not always appropriate due to the fact that panel data often exhibit non-normal characteristics. In this work, the normality assumption is relaxed in spatial mixed models, allowing for spatial heterogeneity. An inference procedure based on Bayesian mixed modeling is carried out with a multivariate skew-elliptical distribution, which includes the skew-t, skew-normal, student-t, and normal distributions as special cases. The methodology is illustrated through a simulation study and according to the empirical literature, we fit our models to non-life insurance consumption observed between 1998 and 2002 across a spatial panel of 103 Italian provinces in order to determine its determinants. Analyzing the posterior distribution of some parameters and comparing various model comparison criteria indicate the proposed model to be superior to conventional ones.

Likelihood-Based Inference on Genetic Variance Component with a Hierarchical Poisson Generalized Linear Mixed Model

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권8호
    • /
    • pp.1035-1039
    • /
    • 2000
  • This study developed a Poisson generalized linear mixed model and a procedure to estimate genetic parameters for count traits. The method derived from a frequentist perspective was based on hierarchical likelihood, and the maximum adjusted profile hierarchical likelihood was employed to estimate dispersion parameters of genetic random effects. Current approach is a generalization of Henderson's method to non-normal data, and was applied to simulated data. Underestimation was observed in the genetic variance component estimates for the data simulated with large heritability by using the Poisson generalized linear mixed model and the corresponding maximum adjusted profile hierarchical likelihood. However, the current method fitted the data generated with small heritability better than those generated with large heritability.

Bayesian Outlier Detection in Regression Model

  • Younshik Chung;Kim, Hyungsoon
    • Journal of the Korean Statistical Society
    • /
    • 제28권3호
    • /
    • pp.311-324
    • /
    • 1999
  • The problem of 'outliers', observations which look suspicious in some way, has long been one of the most concern in the statistical structure to experimenters and data analysts. We propose a model for an outlier problem and also analyze it in linear regression model using a Bayesian approach. Then we use the mean-shift model and SSVS(George and McCulloch, 1993)'s idea which is based on the data augmentation method. The advantage of proposed method is to find a subset of data which is most suspicious in the given model by the posterior probability. The MCMC method(Gibbs sampler) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data and a real data.

  • PDF

Korean Welfare Panel Data: A Computational Bayesian Method for Ordered Probit Random Effects Models

  • Lee, Hyejin;Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • 제21권1호
    • /
    • pp.45-60
    • /
    • 2014
  • We introduce a MCMC sampling for a generalized linear normal random effects model with the ordered probit link function based on latent variables from suitable truncated normal distribution. Such models have proven useful in practice and we have observed numerically reasonable results in the estimation of fixed effects when the random effect term is provided. Applications that utilize Korean Welfare Panel Study data can be difficult to model; subsequently, we find that an ordered probit model with the random effects leads to an improved analyses with more accurate and precise inferences.

워터제트 선박추진용 사류펌프의 설계 및 성능해석 (Design and Performance Analysis of Mixed-Flow Pumps for Waterjet Marine Propulsion)

  • 윤의수;오형우;안종우
    • 한국유체기계학회 논문집
    • /
    • 제6권2호
    • /
    • pp.41-46
    • /
    • 2003
  • The hydraulic design optimization and performance analysis of mixed-flow pumps for waterjet marine vehicle propulsion has been carried out using mean streamline analysis and three-dimensional computational fluid dynamics (CFD) code. In the present study, the conceptual design optimization has been formulated with a non-linear objective function to minimize the fluid dynamic losses, and then the commercial CFD code was incorporated to allow for detailed flow dynamic phenomena in the pump system. Newly designed mixed-flow model pump has been tested in the laboratory. Predicted performance curves by the CFD code agree very well with experimental data for a newly designed mixed-flow pump over the normal operating conditions. The design and prediction method presented herein can be used efficiently as a unified hydraulic design process of mired-flow pumps for waterjet marine vehicle propulsion.

Methods and Techniques for Variance Component Estimation in Animal Breeding - Review -

  • Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권3호
    • /
    • pp.413-422
    • /
    • 2000
  • In the class of models which include random effects, the variance component estimates are important to obtain accurate predictors and estimators. Variance component estimation is straightforward for balanced data but not for unbalanced data. Since orthogonality among factors is absent in unbalanced data, various methods for variance component estimation are available. REML estimation is the most widely used method in animal breeding because of its attractive statistical properties. Recently, Bayesian approach became feasible through Markov Chain Monte Carlo methods with increasingly powerful computers. Furthermore, advances in variance component estimation with complicated models such as generalized linear mixed models enabled animal breeders to analyze non-normal data.

Revisited Security Evaluation on Midori-64 against Differential Cryptanalysis

  • Guoyong Han;Hongluan Zhao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권2호
    • /
    • pp.478-493
    • /
    • 2024
  • In this paper, the Mixed Integer Linear Programming (MILP) model is improved for searching differential characteristics of block cipher Midori-64, and 4 search strategies of differential path are given. By using strategy IV, set 1 S-box on the top of the distinguisher to be active, and set 3 S-boxes at the bottom to be active and the difference to be the same, then we obtain a 5-round differential characteristics. Based on the distinguisher, we attack 12-round Midori-64 with data and time complexities of 263 and 2103.83, respectively. To our best knowledge, these results are superior to current ones.