• 제목/요약/키워드: Linear mixed effect model

검색결과 109건 처리시간 0.021초

공간적 상관관계가 존재하는 이산형 자료를 위한 일반화된 공간선형 모형 개관 (Review of Spatial Linear Mixed Models for Non-Gaussian Outcomes)

  • 박진철
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.353-360
    • /
    • 2015
  • 공간적으로 관측되는 연속형 자료를 분석하는 모형으로 공간적 상관관계를 고려한 다양한 정규모형이 지난 수십 년간 제안되었다. 그 중에서 공간효과를 랜덤효과로 모형화하는 공간선형모형(Spatial Linear Mixed Model; SLMM)이 가장 널리 활용되는 모형 중 하나일 것이다. 연결함수(link function)을 사용하면 SLMM을 비정규 데이터도 적용할 수 있는 일반화된 공간선형모형(Spatial Generalized Linear Mixed Model; SGLMM)으로 자연스럽게 확장할 수 있다. 이 논문에서는 가장 널리 활용되는 SGLMM을 알아보고 실제 데이터 적용사례를 R 패키지를 활용하여 제시하고자 한다.

불균형 자료에서 AIC를 이용한 선형혼합모형 선택법의 효율에 대한 모의실험 연구 (Simulation Study on Model Selection Based on AIC under Unbalanced Design in Linear Mixed Effect Models)

  • 이용희
    • 응용통계연구
    • /
    • 제23권6호
    • /
    • pp.1169-1178
    • /
    • 2010
  • 본 논문은 불균형 자료에서 선형혼합모형에 적용되는 Akaike Information Criterion(AIC)의 효율에 대한 연구이다. Vaida와 Balanchard (2005)에 의해 제안된 cAIC(conditional AIC)는 mAIC(marginal AIC)가 임의효과의 예측에 대한 불확실성을 모형선택에서 반영하지 못하는 단점을 극복할 수 있는 방법이다. cAIC에 대한 이론적인 성질과 확장은 Liang 등 (2008)과 Greven과 Kneib (2010)에 의하여 연구되었다. cAIC의 형태는 자료의 구조에 영향을 받지는 않지만 선형혼합모형에서 모수의 추정 효율은 자료의 불균형의 정도에 따라 많은 영향을 받는 것이 알려져 있다. 기존의 연구에서 실시한 모든 모의실험이 자료가 균형인 경우에만 실행되어 자료의 불균형이 AIC에 근거한 혼합모형 선택 방법의 효율에 어떤 영향을 미치는지 알려져 있지 않다. 본 논문은 자료의 불균형이 모형선택 방법의 효율에 미치는 영향을 모의실험을 통하여 알아보았다. 자료의 불균형이 심해짐에 따라 AIC에 근거한 모형선택방법은 복잡한 모형을 선택하는 경향이 낮아짐을 보였다.

A General Mixed Linear Model with Left-Censored Data

  • Ha, Il-Do
    • Communications for Statistical Applications and Methods
    • /
    • 제15권6호
    • /
    • pp.969-976
    • /
    • 2008
  • Mixed linear models have been widely used in various correlated data including multivariate survival data. In this paper we extend hierarchical-likelihood(h-likelihood) approach for mixed linear models with right censored data to that for left censored data. We also allow a general random-effect structure and propose the estimation procedure. The proposed method is illustrated using a numerical data set and is also compared with marginal likelihood method.

Improved Algorithm for Case-Deletion Diagnostic in Mixed Linear Models

  • Lee, Jang-Teak
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.677-686
    • /
    • 2000
  • Outliers may occur with respect to any of the random components in mixed linear models. We develop a use of simple, inexpensive updating formulas to consider the effect of case-deletion for mixed linear models. The method described here requires inversions of an n x n matrix, where n is the number of nonempty cells. A numerical example illustrates the use of computational formulas.

  • PDF

Efficient Prediction in the Semi-parametric Non-linear Mixed effect Model

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.225-234
    • /
    • 1999
  • We consider the following semi-parametric non-linear mixed effect regression model : y\ulcorner=f($\chi$\ulcorner;$\beta$)+$\sigma$$\mu$($\chi$\ulcorner)+$\sigma$$\varepsilon$\ulcorner,i=1,…,n,y*=f($\chi$;$\beta$)+$\sigma$$\mu$($\chi$) where y'=(y\ulcorner,…,y\ulcorner) is a vector of n observations, y* is an unobserved new random variable of interest, f($\chi$;$\beta$) represents fixed effect of known functional form containing unknown parameter vector $\beta$\ulcorner=($\beta$$_1$,…,$\beta$\ulcorner), $\mu$($\chi$) is a random function of mean zero and the known covariance function r(.,.), $\varepsilon$'=($\varepsilon$$_1$,…,$\varepsilon$\ulcorner) is the set of uncorrelated measurement errors with zero mean and unit variance and $\sigma$ is an unknown dispersion(scale) parameter. On the basis of finite-sample, small-dispersion asymptotic framework, we derive an absolute lower bound for the asymptotic mean squared errors of prediction(AMSEP) of the regular-consistent non-linear predictors of the new random variable of interest y*. Then we construct an optimal predictor of y* which attains the lower bound irrespective of types of distributions of random effect $\mu$(.) and measurement errors $\varepsilon$.

  • PDF

혼합효과모형의 리뷰 (Review of Mixed-Effect Models)

  • 이영조
    • 응용통계연구
    • /
    • 제28권2호
    • /
    • pp.123-136
    • /
    • 2015
  • 관측 가능한 변수들 사이의 관계를 묘사한 갈릴레오의 물리학 법칙 발견 이후, 과학은 큰 성과를 거두며 발전해왔다. 그러나, 관측할 수 없는 변량효과를 함께 이용하여 더 많은 자연 현상을 설명할 수 있게 되었고, 이를 이용한 최초의 통계적 모형인 혼합효과모형이 소개되었다. 계산기술의 발달과 더불어 복잡한 현상에 대한 추론을 위하여 혼합효과모형은 그 중요성이 더욱 커지고 있다. 이러한 혼합효과모형은 최근 다단계 일반화 선형모형을 포함한 여러 모형으로 확장되었으며, 관측할 수 없는 변량효과를 추론하기 위한 다단계 가능도가 제시되었다. 혼합효과모형 특집호를 통해 이러한 모형들이 여러 통계학적 문제점을 해결하는 과정을 제시하고, 앞으로 어떤 확장이 추가적으로 요구되는 지에 대하여 논할 것이다. 빈도록적 접근법과 베이지안 접근법을 함께 다룬다.

A Study of HME Model in Time-Course Microarray Data

  • Myoung, Sung-Min;Kim, Dong-Geon;Jo, Jin-Nam
    • 응용통계연구
    • /
    • 제25권3호
    • /
    • pp.415-422
    • /
    • 2012
  • For statistical microarray data analysis, clustering analysis is a useful exploratory technique and offers the promise of simultaneously studying the variation of many genes. However, most of the proposed clustering methods are not rigorously solved for a time-course microarray data cluster and for a fitting time covariate; therefore, a statistical method is needed to form a cluster and represent a linear trend of each cluster for each gene. In this research, we developed a modified hierarchical mixture of an experts model to suggest clustering data and characterize each cluster using a linear mixed effect model. The feasibility of the proposed method is illustrated by an application to the human fibroblast data suggested by Iyer et al. (1999).

집락자료의 분할표에서 독립성검정 (Testing Independence in Contingency Tables with Clustered Data)

  • 정광모;이현영
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.337-346
    • /
    • 2004
  • 랜덤표본에 관한 이원분할표의 독립성검정에는 통상 피어슨의 카이제곱적합도검정과 우도비검정을 사용한다. 그러나 랜덤표본이 아닌 집락자료에 관한 분할표의 경우에는 이들 검정법은 잘못된 결과를 나타낸다. 이러한 경우에는 공변량의 고정효과 외에 집락에 따른 변량효과를 함께 포함하는 일반화선형혼합모형을 고려함으로써 집락간의 이질성과 집락내의 종속성을 반영할 수 있다. 본 연구에서는 집락자료의 분할표에 대한 일반화선형혼합모형을 소개하고 실례를 통하여 이들 모형의 적합에 대해 논의한다.

Dirichlet Process Mixtures of Linear Mixed Regressions

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.625-637
    • /
    • 2015
  • We develop a Bayesian clustering procedure based on a Dirichlet process prior with cluster specific random effects. Gibbs sampling of a normal mixture of linear mixed regressions with a Dirichlet process was implemented to calculate posterior probabilities when the number of clusters was unknown. Our approach (unlike its counterparts) provides simultaneous partitioning and parameter estimation with the computation of the classification probabilities. A Monte Carlo study of curve estimation results showed that the model was useful for function estimation. We find that the proposed Dirichlet process mixture model with cluster specific random effects detects clusters sensitively by combining vague edges into different clusters. Examples are given to show how these models perform on real data.

Use of Generalized Linear Mixed Model for Pest Density in Repeated Measurement Data

  • Park, Heung-Sun;Cho, Ki-Jong
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.69-74
    • /
    • 2003
  • The estimation of pest density is a prime concern of Integrated Pest Management (IPM) because the success of artificial intervention such as spraying pestcides or natural enemies depends on pest density. Also, the spatial pattern of pest population within plants or plots has been studies in various ways. In this study, we applied generalized linear mixed model to Tetranychus urticae Koch , two-spotted spider mite count in glasshouse grown roses. For this analysis, the subject-specific as well as pupulation-averaged approaches are used.

  • PDF