• Title/Summary/Keyword: Linear load

Search Result 2,035, Processing Time 0.04 seconds

Lateral Behavior of Abutment Piles in Full Integral Bridge During 7 Days in Response to Hydration Heat and Drying Shrinkage (수화열과 건조수축에 의한 7일간의 완전 일체식 교량 교대 말뚝기초의 횡방향 거동)

  • ;;;;Thomas A. Bolte
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.127-149
    • /
    • 2003
  • The bridge tested was 3 spans 90m-long PSC beam concrete bridge with a stub-type abutment which had a skew of 60$^{\circ}$ about the axis of bridge. A cement concrete was placed at the superstructural slab of the bridge. Inclinometers and straingauges were installed at piles as well. During 7 days-curing of superstructural slab, the pile behavior in response to hydration heat and drying shrinkage of the slab was monitored. Then monitored values were compared with the horizontal movement obtained from the HACOM program and the calculated lateral behavior obtained from the nonlinear p-y curves of pile. As a result, lateral behavior of H-piles by the field measurement occurred due to the influence of hydration heat and drying shrinkage obtained during curing of superstructural concrete. The lateral displacements by hydration heat and drying shrinkage were 2.2mmand 1.4mm respectively. It was observed as well that the inflection point of lateral displacement of pile was shown at 1.3m down from footing base. It means that the horizontal movement of stub abutment did not behave as the fixed head condition of a pile but behave as a similar condition. The measured bending stress did not show the same behavior as the fixed head condition of pile but showed a similar condition. The increment of maximum bending stress obtained from the nonlinear p-y curves of pile was about 300(kgf/$\textrm{km}^2$) and was 2 times larger than measured values regardless of installation places of straingauges. Meanwhile, lateral load, maximum lateral displacement, maximum bending stress and maximum bending moment of pile showed a linear behavior as curing of superstructural concrete slab.

Analytical Study on Behavior Characteristic of Shear Friction on Reinforced Concrete Shear Wall-Foundation Interface using High-Strength Reinforcing Bar (고강도 전단철근을 사용한 철근콘크리트 전단벽체-기초계면에서의 전단마찰 거동특성에 대한 해석적 연구)

  • Cheon, Ju-Hyun;Lee, Ki-Ho;Baek, Jang-Woon;Park, Hong-Gun;Shin, Hyun-Mock
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.473-480
    • /
    • 2016
  • The purpose of this study is to provide analytical method to reasonably evaluate the complicated failure behaviors of shear friction of reinforced concrete shear wall specimens using grade 500 MPa high-strength bars. A total of 16 test specimens with a variety of variables such as aspect ratio, friction coefficient of interface in construction joint, reinforcement details, reinforcement ratio in each direction, material properties were selected and the analysis was performed by using a non-linear finite element analysis program (RCAHEST) applying the modified shear friction constitutive equation in interface based on the concrete design code (KCI, 2012) and CEB-FIP Model code 2010. The mean and coefficient of variation for maximum load from the experiment and analysis results was predicted 1.04 and 17% respectively and properly evaluated failure mode and overall behavior characteristic until failure occur. Based on the results, the analysis program that was applied modified shear friction constitutive equation is judged as having a relatively high reliability for the analysis results.

Transpiration Prediction of Sweet Peppers Hydroponically-grown in Soilless Culture via Artificial Neural Network Using Environmental Factors in Greenhouse (온실의 환경요인을 이용한 인공신경망 기반 수경 재배 파프리카의 증산량 추정)

  • Nam, Du Sung;Lee, Joon Woo;Moon, Tae Won;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.411-417
    • /
    • 2017
  • Environmental and growth factors such as light intensity, vapor pressure deficit, and leaf area index are important variables that can change the transpiration rate of plants. The objective of this study was to compare the transpiration rates estimated by modified Penman-Monteith model and artificial neural network. The transpiration rate of paprika (Capsicum annuum L. cv. Fiesta) was obtained by using the change in substrate weight measured by load cells. Radiation, temperature, relative humidity, and substrate weight were collected every min for 2 months. Since the transpiration rate cannot be accurately estimated with linear equations, a modified Penman-Monteith equation using compensated radiation (Shin et al., 2014) was used. On the other hand, ANN was applied to estimating the transpiration rate. For this purpose, an ANN composed of an input layer using radiation, temperature, relative humidity, leaf area index, and time as input factors and five hidden layers was constructed. The number of perceptons in each hidden layer was 512, which showed the highest accuracy. As a result of validation, $R^2$ values of the modified model and ANN were 0.82 and 0.94, respectively. Therefore, it is concluded that the ANN can estimate the transpiration rate more accurately than the modified model and can be applied to the efficient irrigation strategy in soilless cultures.

Sediment Transport Characteristics in a Pressure Pipeline (압력 원형관로내 유사이송특성 연구)

  • Son, Kwang Ik;Kim, Hyun Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.205-209
    • /
    • 2011
  • The low carrying capacity caused by the deposition in a sewer line is one of the main reason of the urban flood. Therefore, an efficient maintenance and management of the storm water drainage system is very important to prevent urban flood. In this research, the sediment transport characteristics through a pressure pipeline were examined with laboratory experiments. Bed-forms in a pipeline, sediment rates, roughness due to sediments were examined. Experimental system consists of flow circulation system with a pump and a sediment feeder at the upstream of the pipeline. Sediments were supplied into a 60 mm-diameter and 8 m-long pipe. Maximum flow rate is $30m^3/hr$, and the sediment feeding rate range is 5 g/s~19 g/s. Governing parameters and estimation equation for sediment transport rate were developed. The mean velocity (U), coefficient of viscosity (${\mu}$), unit width bed load ($q_b$), mean diameter of particle ($d_{50}$), unit weight of sediment in water (${\gamma}^{\prime}_s$) were adopted as the most influencing factors of sediment transport patterns. The prediction equation for sediment transport rate were developed with two dimensionless terms. These two dimensionless terms showed a linear relationship with high correlation coefficient.

해상풍속측정용 마스트의 충격해석에 관한 연구

  • Lee, Gang-Su;Kim, Man-Eung;Son, Chung-Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.108-108
    • /
    • 2009
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in wind met mast on impact of barge. The collision between wind met mast and barge is generally a complex problem and it is often not practical to perform rigorous finite element analyses to include all effects and sequences during the collision. LS-dyna generally purpose explicit finite element code, which is a product of ANSYS software, is used to model and analyze the non-linear response of the met mast due to barge collision. A significant part of the collision energy is dissipated as strain energy and except for global deformation modes, the contribution from elastic straining can normally be neglected. On applying impact force of a barge to wind met mast, the maximum acceleration, internal energy and plastic strain were calculated for each load cases using the finite element method and then compare it, varying to the velocity of barge, with one varying to the thickness of rubber fender conditions. Hence, we restrict the present research mainly to the wind met mast and also parametric study has been carried out with various velocities of barge, thickness of wind met mast, thickness and Mooney-Rivlin coefficient of rubber fender with experimental data. The equation of motion of the wind met mast is derived under the assumption that it was ignored vertical movement effect of barge on sea water. Such an analyzing method which was developed so far, make it possible to determine the proper size and material properties of rubber fender and the optimal moving conditions of barge, and finally, application method can be suggested in designing process of rubber fender considering barge impact.

  • PDF

A Fast Multipoint-to-Point LSP Traffic Engineering for Differentiated Service in MPLS Networks (MPLS 망에서 차별화 된 서비스를 제공하기 위한 빠른 Multipoint-to-Point LSP 결정 방식)

  • Kim, Seong-Gwan;Jo, Yeong-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.5
    • /
    • pp.232-242
    • /
    • 2002
  • In a MPLS(Multiprotocol Label Switching) network, it is important to reduce the number of labels and LSP(Lable Switched Path)s for network resource management. MTP(Multipoint-to-Point) LSP can be used to solve this problem. In consideration of traffic engineering, MTP LSP must be chosen to enhance the availability of network and link utilization. Also, a fast mechanism to setup MTP LSPs is required for rerouting capability against link failure. In this paper, we propose a fast MTP LSP traffic engineering of multipath MTP LSP by using a mapping of a MTP LSP upon Diffserv PHBs(Per Hop Behavior) in a Diffserv-capable MPLS network. In the proposed traffic engineering, we determine multiple MTP LSPs in a hierarchical manner according to the characteristics of different services. By using Monte-Carlo method for traffic load balancing process, it provides fast rerouting capability in case of frequent link failure across large network. Out method produces to be nearly optimal within reasonable run-times. It's time complexity is in O( Cn$^2$logn) as conventional multipath routing and it is much faster than Linear Programming approach. Simulation results show that the proposed traffic engineering can be controlled effectively in an administrative manner and enhance the availability of network in comparison with conventional multipath routing.

The Physical and Mechanical Properties of No-Fines Lightweight Concrete Using Synthetic Lightweight Coarse Aggregate (인공경량조골재(人工輕量粗骨材)를 사용(使用)한 무세골재(無細骨材) 경량(輕量)콘크리트의 물리(物理)·가학적(加學的) 특성(特性))

  • Kim, Seong Wan;Min, Jeong Ki;Cho, Seung Seup;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.39-50
    • /
    • 1996
  • The normal cement concrete is widely used material to build the construction recently, but it has a fault to increase the dead load on account of its unit weight is large compared with strength. So, many engineers are continuously searching for new materials of construction to provide greater performance at lower density. Many studies were carried out on the lightweight aggregate concrete in foreign country in the latter half of the 19th century, therefore lightweight aggregate concrete has been used successfully for many years for structural members. The main purpose of the work described in this paper were to establish its physical and mechanical properties of no-fines lightweight concrete using synthetic lightweight coarse aggregates. Test results are summarized as follows ; The water-cement ratio was shown less than 33% in use synthetic lightweight coarse aggregates, unit weights of synthetic lightweight concrete was shown less than $1,800kg/m^3$ and compressive strength was higher than $200kg/m^2$. And the pulse velocity was more than 3,000m/sec. The relationship of compressive strength between unit weight and pulse velocity was shown to be approximately linear.

  • PDF

The Influence of Sensory Interference Arising from View-Height Differences on Visual Short-Term Memory Performance (조망 높이의 차이가 초래한 감각적 간섭이 시각단기기억 수행에 미치는 영향)

  • Ka, Yaguem;Hyun, Joo-Seok
    • Science of Emotion and Sensibility
    • /
    • v.23 no.1
    • /
    • pp.17-28
    • /
    • 2020
  • Lowering observers' view-height may increase the amount of occlusion across objects in a visual scene and prevent the accurate identification of the objects in the scene. Based on this possibility, memory stimuli in relation to their expected views from different heights were displayed in this study. Thereafter, visual short-term memory (VSTM) performance for the stimuli was measured. In Experiment 1, the memory stimuli were presented on a grid-background drawn according to linear perspectives, which varied across observers' three different view-heights (high, middle, and low). This allowed the participants to remember both the color and position of each memory stimulus. The results revealed that testing participants' VSTM performance for the stimuli under a different memory load of two set-sizes (3 vs. 6) demonstrated an evident drop of performance in the lowest view-height condition. In Experiment 2, the performance for six stimuli with or without the grid-background was tested. A similar pattern of performance drop in the lowest condition as in Experiment 1 was found. These results indicated that different view-heights of an observer can change the amount of occlusion across objects in the visual field, and the sensory interference driven by the occlusion may further influence VSTM performance for those objects.

Comparison of Three Methods Assessing the Ergonomic Risks of Manual Lifting Tasks at Ship Engine Manufacturing Facilities (선박용 엔진 제조업 들기작업의 인간공학적 위험 평가를 위한 세 가지 방법 비교)

  • Kim, Sun Ja;Shin, Yong Chul;Kim, Boo Wook;Kim, Hyun Dong;Woo, Ji Hoon;Kang, Dongmug;Lee, Hyun Seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.2
    • /
    • pp.104-113
    • /
    • 2005
  • A variety of ergonomic assessment methods of lifting tasks known as a major cause of work-related lower back pain have been used. But there is a limited information in choosing the most appropriate assessment method for a particular job and in finding out strengths and weakness of the methods. The purpose of this study was to assess and compare the ergonomic risks of lifting tasks in a marine diesel engine production industry by three lifting ergonomic assessment tools widely used: the National Institute for Occupational Safety and Health(NIOSH) Revised Lifting Equation(NLE), the Washington Administrative Code 296-62-0517(WAC), and the Snook Tables. Lifting index(weight of load/Recommended Weight Limit) of NLE($LI_{NLE}$) was above 1 at 34 tasks(75.6%) of a total number of 45 lifting tasks. LI of WAC($LI_{WAC}$) was above 1 at 11 tasks(24.4 %). LI of Snook Table($LI_{Snook}$) was above 1 at 29 tasks(64.4%). Thus, LI was high in orders of $LI_{NLE}$ > $LI_{Snook}$ > $LI_{WAC}$. There were significantly high correlations among three Lls(p<0.01). The correlation coefficients between $LI_{NLE}$and the other three Lls($LI_{WAC}$ and $LI_{Snook}$) were r=0.93 and r=0.88, respectively. The linear regression equations were y = 0.444x + 0.11(r=0.93) between $LI_{NLE}$ and $LI_{WAC}$, y = 0.93x + 0.008(r=0.88) between LI(NLE) and $LI_{Snook}$. The LI values by WAC was significantly lower than those by the other tools. The compared features, strength and limitation among these tools were described in this paper.

Matrix solid phase dispersion isolation and high performance liquid chromatographic determination of five benzimidazole anthelmintics in bovine muscle, liver and omasum (시료고체상분산처리와 액체크로마토그라피를 이용한 소의 근육, 간 및 천엽에서의 벤지미다졸계 구충제 잔류분석)

  • Kim, Chung-Hui;Kim, Gon-Sup;Park, Jung-Hee;Hah, Dae-Sik;Ryu, Jae-Doo;Son, Sung-Gi;Heo, Jung-Ho;Jung, Myung-Ho;Kim, Jong-Shu
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.2
    • /
    • pp.171-181
    • /
    • 2002
  • Simultaneous multiresidue analysis using liquid chromatography determination for five benzimidazole anthelmintics(thiabendazole, oxibendazole, albendazole, mebendazole and fenbendazole) in bovine muscle, liver and omasum has been described. Blank or benzimidazole-fortified samples(0.5g) were blended with bulk $C_{18}$($40{\mu}m$, 18% load, endcapped, 2g). A column made from the resultant $C_{18}$/animal tissue matrix was first washed with hexane($8m{\ell}$), following which the benzimidazoles were eluted with acetonitrile($8m{\ell}$). Analytes of extracted sample were determined by liquid chromatography with UV detector at 290nm. Correlation coefficients of standard curves for individual benzimidazole isolated from fortified samples, using internal standardization, were linear($0.991{\pm}0.007$ to $0.996{\pm}0.005$) with average relative percentage recoveries from $62.1{\pm}3.8(%)$ to $92.3{\pm}7.5(%)$ for the concentration range($0.2{\sim}6.4{\mu}g/g$), respectively. Recoveries rates of TBZ, MBZ in liver, OBZ, MBZ in muscle and TBZ, MBZ in omasium from fortified benzimidazole were 92.%, 87.3%, 74.5%, 82.7%, 75.2% and 83.5% at condition II, respectively. Condition II showed higher recoveries rates than condition I. These results indicated that the matrix solid phase dispersion(MSPD) methodology is acceptable for the determination of 5 benzimidazole anthelmintics and may also suitable for other matrixes of food animal origin.