• Title/Summary/Keyword: Linear guideway

Search Result 32, Processing Time 0.023 seconds

Development of an Ultra Precision Hydrostatic Guideway Driven by a Coreless Linear Motor

  • Park Chun Hong;Oh Yoon Jin;Hwang Joo Ho;Lee Deug Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.55-60
    • /
    • 2005
  • In order to develop the hydrostatic guideways driven by a core less linear motor for ultra precision machine tools, a prototype of guideway is designed and tested. A coreless linear DC motor with a continuous force of 156 N and a laser scale with a resolution of 0.01 ㎛ are used in the system. Experimental analysis on the static stiffness, motion errors, positioning error and its repeatability, micro step response and velocity variation of the guideway are performed. The guideway shows infinite stiffness within 50 N applied load in the feed direction, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ㎛ linear motion error and 0.1 arcsec angular motion error are acquired. The guideway also reveals 0.21 ㎛ positioning error and 0.09 ㎛ repeatability, and it shows stable responses following a 0.01 ㎛ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is estimated that the hydrostatic guideway driven by a coreless linear motor is very useful for the ultra precision machine tools.

Development of a Aerostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 공기정압안내면 개발)

  • 박종하;황주호;박천홍;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.36-40
    • /
    • 2003
  • In order to discuss the availability of aerostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156N and a laser scale with the resolution of $0.01\mu\textrm{m}$ are used as the feeding system. The experiments are performed on the static stiffness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway also has $0.21\mu\textrm{m}$ of positioning error and $0.09\mu\textrm{m}$ of repeatability, and it shows the stable response against the $0.01\mu\textrm{m}$ resolution step command. The velocity variation of feeding system is less than 0.6%. From these results, it is confirmed that the aerostatic guideway driven by the coreless linear motion is very useful for the ultra precision machine tools.

  • PDF

Development of a Hydrostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 유정압안내면 개발)

  • 박천홍;황주호;오윤진;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.343-346
    • /
    • 2003
  • In order to discuss the availability of the hydrostatic guideway driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156 N and a laser scale with the resulution of 10 nm are used as the feeding system. The experiments are performed on the static stiffness. motion accuracy, positioning accuracy. microstep response and variation of velocity. The guideway has the infinite axial stiffness within 50 N of applied load, and has 0.08 ${\mu}{\textrm}{m}$ of linear motion error and 0.1 arcsec of angular motion error. It also has 0.21 ${\mu}{\textrm}{m}$ of positioning error and 0.09 ${\mu}{\textrm}{m}$ of repeatability, and it shows the stable response against the 10 nm resolution step command. The velocity variation of feeding system is less than 5%. From these results, it is confirmed that the hydrostatic guideway driven by the coreless linear motor is very useful for the ultra precision machine tools.

  • PDF

Development of a Hydrostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 유정압안내면 개발)

  • 박천홍;오윤진;황주호;이득우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.139-144
    • /
    • 2004
  • In order to discuss the availability of hydrostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156 N and a laser scale with the resolution of 0.01 ${\mu}{\textrm}{m}$ are used as the feeding system. The experiments are performed on the static stuffiness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway has the infinite axial stillness within 50 N of applied load, and by the motion error compensation method using the Active Controlled Capillary, 0.08 ${\mu}{\textrm}{m}$ of linear motion error and 0.1 arcsec of angular motion error are acquired. The guideway also has 0.21 ${\mu}{\textrm}{m}$ of positioning error and 0.09 ${\mu}{\textrm}{m}$ of repeatability, and it shows the stable response against the 0.01 ${\mu}{\textrm}{m}$ resolution step command. The velocity variation of feeding system is less than 0.6 %. From these results, it is confirmed that the hydrostatic guideway driven by the coreless linear motor is very useful fur the ultra precision machine tools.

Analysis of the Motion Errors in Linear Motion Guide (직선베어링 안내면의 운동오차 해석)

  • Kim, Kyung-Ho;Park, Chun-Hong;Lee, Hu-Sang;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.139-148
    • /
    • 2002
  • Motion errors of linear motion guideway are analyzed theoretically in this paper. For the analysis, an new algorithm predicting motion errors of bearing and guideway is proposed using the Hertz's elastic deformation theory. Accuracy averaging effect can be calculated quantitatively by analyzing relationship between motion errors of guideway and spatial frequency of rail form error. Influences of design parameters on the motion errors including the number of balls, preload, ball diameter, bearing length and the number of bearings are analyzed. As it is difficult to measure the rail form error, experimental results are compared with results analyzed by the equivalent analysis method which evaluate the motion errors of guideway using the measured errors of bearing. From the experimental results, it is confirmed that the proposed analysis method it effective lo analyze the motion errors of linear motion bearing and guideway.

Characterization of the dynamic behavior of a linear guideway mechanism

  • Chang, Jyh-Cheng;Wu, Shih-Shyn James;Hung, Jui-Pin
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.1-20
    • /
    • 2007
  • Dynamic behaviors of the contact surface between ball and raceway in a guideway mechanism vary with the applied loads and hence affect the mechanical responses of machine tools. The study aims to investigate the nonlinear characteristics of dynamic behaviors at the rolling contact interface in linear guideway mechanisms. Firstly, analytical method was introduced to understand the contact behaviors based on Hertz contact theory in a point-to-point way. Then, the finite element approach with a three-dimensional surface-to-surface contact model and appropriate contact stiffness was developed to study the dynamic characteristics of such linear guideways. Finally, experiments with modal test were conducted to verify the significance of both the analytical and the numerical results. Results told that the finite element approach may provide significant predictions. The study results also concluded that the current nonlinear models based on Hertz's contact theory may accurately describe the contact characteristic of a linear guideway mechanism. In the modal analysis, it was told that the natural frequencies vary a little with different loading conditions; however, the mode shapes are changed obviously with the magnitude of applied loads. Therefore, the stiffness of contact interface needs to be properly adjusted during simulation which may affect the dynamic characteristics of the machine tools.

Dynamic interaction analysis of actively controlled maglev vehicles and guideway girders considering nonlinear electromagnetic forces

  • Min, Dong-Ju;Lee, Jun-Seok;Kim, Moon-Young
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.39-57
    • /
    • 2012
  • This study intends to explore dynamic interaction behaviors between actively controlled maglev vehicle and guideway girders by considering the nonlinear forms of electromagnetic force and current exactly. For this, governing equations for the maglev vehicle with ten degrees of freedom are derived by considering the nonlinear equation of electromagnetic force, surface irregularity, and the deflection of the guideway girder. Next, equations of motion of the guideway girder, based on the mode superposition method, are obtained by applying the UTM-01 control algorithm for electromagnetic suspension to make the maglev vehicle system stable. Finally, the numerical studies under various conditions are carried out to investigate the dynamic characteristics of the maglev system based on consideration of the linear and nonlinear electromagnetic forces. From numerical simulation, it is observed that the dynamic responses between nonlinear and linear analysis make little difference in the stable region. But unstable responses in nonlinear analysis under poor conditions can sometimes be obtained because the nominal air-gap is too small to control the maglev vehicle stably. However, it is demonstrated that this unstable phenomenon can be removed by making the nominal air-gap related to electromagnetic force larger. Consequently it is judged that the nonlinear analysis method considering the nonlinear equations of electromagnetic force and current can provide more realistic solutions than the linear analysis.

Modeling and Validation of 3DOF Dynamics of Maglev Vehicle Considering Guideway (궤도 선형을 고려한 자기부상 열차의 3자유도 동역학 모델 수립 및 검증)

  • Park, Hyeon-cheol;Noh, Myounggyu;Kang, Heung-Sik;Han, Hyung-Suk;Kim, Chang-Hyun;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Magnetically levitated (Maglev) vehicles maintain a constant air gap between guideway and car bogie, and thereby achieves non-contact riding. Since the straightness and the flatness of the guideway directly affect the stability of levitation as well as the ride comfort, it is necessary to monitor the status of the guideway and to alert the train operators to any abnormal conditions. In order to develop a signal processing algorithm that extracts guideway irregularities from sensor data, virtual testing using a simulation model would be convenient for analyzing the exact effects of any input as long as the model describes the actual system accurately. Simulation model can also be used as an estimation model. In this paper, we develop a state-space dynamic model of a maglev vehicle system, running on the guideway that contains jumps. This model contains not only the dynamics of the vehicle, but also the descriptions of the power amplifier, the anti-aliasing filter and the sampling delay. A test rig is built for the validation of the model. The test rig consists of a small-scale maglev vehicle, tracks with artificial jumps, and various sensors measuring displacements, accelerations, and coil currents. The experimental data matches well with those from the simulation model, indicating the validity of the model.

Emergency Evacuation Scenario Study of Urban Metro Vehicle Running on Elevated Guideway (도시철도차량의 고가선로 비상대피 시나리오 분석)

  • Kim, Young-Sang;Maeng, Hee-Young;Wang, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2012
  • There have been recently introduced new types of urban metro vehicles called LRT (Light Rail Transit) running on elevated guideway such as Uijeongbu VAL(which stands for V$\acute{e}$hicule Automatique L$\acute{e}$ger: Automatic Light Rail Vehicle) system, Yong-In LIM(Linear Induction Motor) system, Incheon international airport MAGLEV(Magnetic Levitated Vehicle) system and Daegu monorail system. Most of accidents by the vehicles are bound to happen on elevated guideway. Therefore, it is of vital importance to analyze hazards related to vehicles running on elevated guideway and study emergency evacuation scenarios applicable in case of accidents on elevated guideway so as to secure the safety of the new types of urban metro vehicles. In this study, FTA(Fault Tree Analysis) model was developed to identify all possible hazards, and all possible evacuation scenarios were studied. It was also confirmed that each hazard can be corresponded to one or more evacuation scenarios. This result shows that passengers can be evacuated according to one of the scenarios identified in this study in case of an accident of "Train Stranded on Elevated Guideway".

Levitation Control Simulation of a Maglev Vehicle Considering Guideway Flexibility (가이드웨이 유연성이 고려된 자기부상열차 부상제어 시뮬레이션)

  • Han, Jong-Boo;Lim, Jaewon;Kim, Chang-Hyun;Han, Hyung-Suk;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • In magnetic levitation vehicles, the clearance between the magnet and track should be maintained within an allowable range through a feedback control loop. The flexibility of the guideway would introduce additional modes in the overall suspension system, resulting in dynamic interaction between the guideway vibration and the electromagnetic suspension control system. This dynamic interaction can be a serious problem, particularly at very low speeds or standstill, and may cause airgap instability. To optimize the overall system dynamics, an integrated dynamic model including mechanical and electrical parts and a flexible guideway as well as a control loop was developed. With the proposed model, airgap simulations at standstill were performed while varying the control gains, specifically with the aim of understanding the effects of gains of the PID controller on the airgap variation. The findings may be used to achieve a stable levitation controller design.