DOI QR코드

DOI QR Code

Levitation Control Simulation of a Maglev Vehicle Considering Guideway Flexibility

가이드웨이 유연성이 고려된 자기부상열차 부상제어 시뮬레이션

  • Han, Jong-Boo (Graduate School of Mechanical Design and Mechatronics Engineering, Chungnam National University) ;
  • Lim, Jaewon (Dept. of Magnetic Levitation and Linear Drive, Korea Institute of Machinery and Materials) ;
  • Kim, Chang-Hyun (Dept. of Magnetic Levitation and Linear Drive, Korea Institute of Machinery and Materials) ;
  • Han, Hyung-Suk (Dept. of Magnetic Levitation and Linear Drive, Korea Institute of Machinery and Materials) ;
  • Kim, Sung-Soo (Department of Mechatronics Engineering, Chungnam National University)
  • Received : 2015.01.12
  • Accepted : 2015.02.06
  • Published : 2015.02.28

Abstract

In magnetic levitation vehicles, the clearance between the magnet and track should be maintained within an allowable range through a feedback control loop. The flexibility of the guideway would introduce additional modes in the overall suspension system, resulting in dynamic interaction between the guideway vibration and the electromagnetic suspension control system. This dynamic interaction can be a serious problem, particularly at very low speeds or standstill, and may cause airgap instability. To optimize the overall system dynamics, an integrated dynamic model including mechanical and electrical parts and a flexible guideway as well as a control loop was developed. With the proposed model, airgap simulations at standstill were performed while varying the control gains, specifically with the aim of understanding the effects of gains of the PID controller on the airgap variation. The findings may be used to achieve a stable levitation controller design.

상전도흡인식 자기부상열차는 전자석의 전류를 조정하여 차량과 선로 사이의 간극(공극)을 일정하게 유지한다. 이러한 능동현가장치를 사용하는 자기부상열차에 있어서는 다양한 외란에도 불구하고 부상제어기를 이용한 부상공극을 허용하는 범위 내로 유지하는 것이 핵심기술 중의 하나이다. 특히 차량과 유연한 가이드웨이 사이의 동적상호작용에 의해 발생되는 진동은 저속 및 정지상태에서 부상안정성을 방해하는 중요한 요인으로 작용한다. 본 논문에서는 가이드웨이의 유연성에도 강인한 부상제어기를 개발하기 위하여 차량과 유연 가이드웨이 사이의 연성 동역학 모델을 개발하고, 전자석 및 부상제어기도 포함시키는 통합모델링을 제안하였다. 개발된 통합동역학 모델을 이용하여 가이드웨이의 유연성을 고려한 부상공극 시뮬레이션을 수행하였다.

Keywords

References

  1. D. Zhou, C. Hansen, J. Li, W. Chang (2010) Review of coupled vibration problems in EMS maglev vehicles, International Journal of Acoustics and Vibration, 15(10), pp. 10-23.
  2. C.F. Zhao, W.M. Zhai (2002) Maglev vehicle/guideway vertical random response and ride quality, Vehicle System Dynamics, 38(3), pp. 185-210. https://doi.org/10.1076/vesd.38.3.185.8289
  3. Y. Cai, S.S. Chen, D.M. Rote, H.T. Coffey (1994) Vehicle/guideway interaction for high speed vehicles on a flexible guideway, Journal of Sound and Vibration, 175(5), pp. 625-646. https://doi.org/10.1006/jsvi.1994.1350
  4. Y. Cai, S.S. Chen, D.M. Rote, H.T. Coffey (1993) Vehicle/guideway dynamic interaction in maglev systems, Transactions of the ASME, 118(3), pp. 526-530.
  5. G. Shu, M. Reinhold, G. Shen (2007) Modeling and simulation of Shanghai maglev train transrapid with random Track irregularities, Reinhold Meisinger, pp. 3-10.
  6. G. Shu, M. Reinhold, G. Shen (2008) Simulation of a maglev train with periodic guideway deflections, 7th International Conference on System Simulation and Scientific Computing, pp. 421-425.
  7. K.J Kim, H.S. Han, S.J. Yang (2013) Analysis of dynamic interaction between maglev vehicle and guideway. Tans. Korean Soc. Mech. Eng., 37(12), pp. 1559-1565. https://doi.org/10.3795/KSME-A.2013.37.12.1559
  8. H.S Han (2003) A study on the dynamic modeling of a magnetic levitation vehicle, JMST International, 46(3), pp. 1497-1501.
  9. LMS Virtual Lab. Motion user's manual.
  10. E.J. Haug (1989) Computer-Aided Kinematics and Dynamics of Mechanical System. Allyn and Bacon, USA, pp. 416-452.
  11. Achieved at http://www.vibrationdata.com/tutorials/ModalMass.pdf
  12. P. K. Sinha (1987) Electromagnetic suspension dynamics & control. Peter Peregrinus Ltd, London, pp. 52-70.
  13. K.L. Cha, J.S Beak (2010) The optimal design for Super-structure of the MAGLEV train. Journal of the Korean Society for Railway, 13(3), pp. 35-45.
  14. B.S. Kang, S.S Kim (1998) A study on the RC and PSC structure system of the transrapid in germany. Journal of the Korean Society for Railway, 1(1), pp. 112-121.