• Title/Summary/Keyword: Linear dynamic systems

Search Result 796, Processing Time 0.023 seconds

A Study on the Optimal Design, Modeling and Control of the Multi d.o.f Precision Positioning System Using Magnetic Levitation Actuating Principle (자기 부상 방식 구동원리를 이용한 다자유도 정밀 위치 시스템의 최적 설계, 모델링 및 제어에 관한 연구)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.779-787
    • /
    • 2001
  • The multi degree of freedom system using magnetic levitation has been implemented successfully. Differently from another noncontact systems, the developed system was focused on the maximization of the system stiffness under the constraint of a limited input. The variation of a relative adopting point between the magnetic pair, its location on the fixed base, and the selection of optimal specifications for the main active magnetic elements give us another chance to realize the increased robustness against external disturbances with the less control inputs. In this paper, the overall development procedures are given including the optimal design, the dynamic modeling, the various control tests, and the main issues to be solved.

A Study on Low Frequency Oscillations in Electric Power Systems. (전력계통의 저주파진동현상해석에 관한 연구)

  • Song, Kil-Yeong;Kwon, Sae-Hyuk;Chang, Bang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.870-873
    • /
    • 1988
  • AESOPS computer program is designed to find those eigenvalues of a linear dynamic system model which most strongly characterize oscillations between generator rotors. The low frequency oscillation actually occurred in October, 1986 in Korean Electric Power Corporation (KEPCO) System. 28 oscillation modes are identified through computer runs and two of them are calculated unstable in the case of the start of a pumped-storage unit. This program is considered to complement the conventional PSS/E stability program for the stability study of KEPCO system.

  • PDF

A Study on the Minimum - Energy Trajectories Planning for Industrial Robot (로보트의 소비 에너지 최소화를 위한 궤도 계획에 관한 연구)

  • Choi, Doe-Yeong;Kwon, Syng-Hoe;Park, In-Kap;Kim, Hyung-Lae
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.937-940
    • /
    • 1988
  • The problem of minimization of energy, consumed by the robot manipulator, is important, notably for larger manipulators, higher working speeds, and loads. Obviously, the stated problem requires the application of optimal control theory, which is being successfully applied for linear system and certain classes of nonlinear systems. However, the application of optimal control theory(in energy or time optimization) leads to substantial practical difficulties, so that significant simplifications are usually performed, either in model complexity or by neglecting the existing constraints. In this paper the problem of obtaining such an optimization method. which would take into account the complete system dynamics and all the constraints is considered. The only method found to be suitable for such a complex optimization should be based on dynamic programming.

  • PDF

A simulation of Lightning Performance of the 154 kV Transmission Line with the Surge Arrester Installation (154 kV 송전선로에 피뢰기 설치시 내뢰성 향상효과 모의)

  • Shim, Eung-Bo;Woo, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1642-1644
    • /
    • 1997
  • The simulation study of lightning faults reducing effects by the installation of surge arresters on the 154 kV transmission line is stated here. For the purpose of detailed simulation of arcing horn, a flashover model with dynamic characteristics of arcing horn gap was represented as a non-linear inductance which is controlled by EMTP/TACS(Electromagnetic Transient Program/fransient Analysis of Control Systems) switches. The back flashover inducing current was increased from 50 kA to 88 kA by the installation of surge arresters on the transmission line which has one ground wire and 20 ohms of tower footing resistances. The great advantage of surge arrester installation on one circuit of the double circuit transmission line is to prevent the simultaneous back flashover up to 190 kA.

  • PDF

The development of critical node method based heuristic procedure for Solving fuzzy assembly-line balancing problem (퍼지 조립라인밸런싱 문제 해결을 위한 주노드법에 기초한 휴리스틱 절차 개발)

  • 이상완;박병주
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.189-197
    • /
    • 1999
  • Assembly line balancing problem is known as one of difficult combinatorial optimization problems. This problem has been solved with linear programming, dynamic programming approaches. but unfortunately these approaches do not lead to efficient algorithms. Recently, genetic algorithm has been recognized as an efficient procedure for solving hard combinatorial optimization problems, but has a defect that requires long-run time and computational complexties to find the solution. For this reason, we adapt a new method called the Critical Node Method that is intuitive, easy to understand, simple for implementation. Fuzzy set theory is frequently used to represent uncertainty of information. In this paper, to treat the data of real world problems we use a fuzzy number to represent the duration and Critical Node Method based heuristic procedure is developed for solving fuzzy assembly line balancing problem.

  • PDF

Identification of Structural Dynamic Systems (구조물의 동특성 추정방법에 관한 연구)

  • 윤정방;소봉정선
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.113-119
    • /
    • 1989
  • Methods for identification of modal properties of linear structures are presented. The extended Kalman filtering technique is employed. The state equation is formulated by two different ways, namely by the time domain and frequency domain approaches. Verifications are carried out by using the simulated records of ground acceleration and structural response. Then the techniques are applied to the estimation of modal parameters of a scaled model for a 3-story building which is installed on a shaking table.

  • PDF

H filter design for offshore platforms via sampled-data measurements

  • Kazemy, Ali
    • Smart Structures and Systems
    • /
    • v.21 no.2
    • /
    • pp.187-194
    • /
    • 2018
  • This paper focuses on the $H_{\infty}$ filter design problem for offshore steel jacket platforms. Its objective is to design a full-order state observer for offshore platforms in presence of unknown disturbances. To make the method more practical, it is assumed that the measured variables are available at discrete-time instants with time-varying sampling time intervals. By modelling the sampling intervals as a bounded time-varying delay, the estimation error system is expressed as a time-delay system. As a result, the addressed problem can be transformed to the problem of stability of dynamic error between the system and the state estimator. Then, based on the Lyapunov-Krasovskii Functional (LKF), a stability criterion is obtained in the form of Linear Matrix Inequalities (LMIs). According to the stability criterion, a sufficient condition on designing the state estimator gain is obtained. In the end, the proposed method is applied to an offshore platform to show its effectiveness.

Dynamic behavior of axially functionally graded simply supported beams

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.669-678
    • /
    • 2020
  • This paper focuses on the free vibration analysis of axially functionally graded (FG) Euler-Bernoulli beams. The material properties of the beams are assumed to obey the linear law distribution. The complexities in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using the Differential Transformation Method (DTM). Natural frequencies and corresponding normalized mode shapes are calculated. Validation targets are experimental data or finite element results. Different parameters such as reinforcement distribution, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. The delivered results prove the capability and the robustness of the applied method. The studied parameters are demonstrated to be very crucial for the normalized natural frequencies and mode shapes.

NEW MODELING AND CONTROL OF AN ASYMMETRIC HYDRAULIC ACTIVE SUSPENSION SYSTEM

  • Kim, Wanil;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.490-495
    • /
    • 1998
  • In this paper an asymmetric hydraulic actuator which consists of single acting cylinder and servo valve is modeled for a quarter car active suspension system. This model regards the force as an internal state rather than a control input. The control input of the model is the sum of oil flows that pass through the valve's orifices. The resulting dynamic equation in the state space ap-pears a feedback connection of a nominal linear time in-variant term with a nonlinear bounded uncertain block. Since this model makes it possible to eliminate the force control phase, analysis and controller design are made straightforward and simple. Well known LQR method is then applied. Simulation and test rig experiment show the effectiveness of this approach in modeling and control.

  • PDF

Nonlinear Earthquake Response Analysis of 2-D Underground Structures with Soil-Structure Interaction Including Separation and Sliding at Interface (지반-구조물 상호작용계의 경계면에서 미끄러짐과 분리현상을 고려한 이차원 지하구조물의 비선형 지진응답해석)

  • 최준성;이종세;김재민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.174-181
    • /
    • 2002
  • The paper presents an effective analytical method for SSI systems which can have separation or sliding at the soil-structure interface. The method is based on a hybrid approach which combines a linear SSI code KIESSI-2D in frequency domain with a commercial finite element package ANSYS to obtain nonlinear dynamic responses in time domain. The method is applied to a 2-D underground box structure which experiences separation and sliding at the soil-structure interface. Material nonlinearity of the concrete structure is also included in the analysis. Effects of the interface conditions are examined and some critical factors affecting the seismic performance of underground structures are identified.

  • PDF