• Title/Summary/Keyword: Linear dynamic analysis

Search Result 1,367, Processing Time 0.027 seconds

Transient Linear Viscoelastic Stress Analysis Based on the Equations of Motion in Time Integral (시간적분형 운동방정식에 근거한 동점탄성 문제의 응력해석)

  • Lee, Sung-Hee;Sim, Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1579-1588
    • /
    • 2003
  • In this paper, the finite element equations for the transient linear viscoelastic stress analysis are presented in time domain, whose variational formulation is derived by using the Galerkin's method based on the equations of motion in time integral. Since the inertia terms are not included in the variational formulation, the time integration schemes such as the Newmark's method widely used in the classical dynamic analysis based on the equations of motion in time differential are not required in the development of that formulation, resulting in a computationally simple and stable numerical algorithm. The viscoelastic material is assumed to behave as a standard linear solid in shear and an elastic solid in dilatation. To show the validity of the presented method, two numerical examples are solved nuder plane strain and plane stress conditions and good results are obtained.

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도응답 해석)

  • 김인학;독고욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.62-69
    • /
    • 1996
  • Most dynamic systems have various random properties in excitation and system parameters. In this paper, a procedure fur response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameter and response with random properties are modeled by perturbation technique, aand then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an application example, the transient response is calculated for a sdof system with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF

Finite element simulation of traditional and earthquake resistant brick masonry building under shock loading

  • Daniel, A. Joshua;Dubey, R.N.
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.19-36
    • /
    • 2015
  • Modelling and analysis of a brick masonry building involves uncertainties like modelling assumptions and properties of local material. Therefore, it is necessary to perform a calibration to evaluate the dynamic properties of the structure. The response of the finite element model is improved by predicting the parameter by performing linear dynamic analysis on experimental data by comparing the acceleration. Further, a nonlinear dynamic analysis was also performed comparing the roof acceleration and damage pattern of the structure obtained analytically with the test findings. The roof accelerations obtained analytically were in good agreement with experimental roof accelerations. The damage patterns observed analytically after every shock were almost similar to that of experimental observations. Damage pattern with amplification in roof acceleration exhibit the potentiality of earthquake resistant measures in brick masonry models.

Dynamic Characteristic Analysis of Permanent Magnet Linear Synchronous Motor Using FEM (유한요소법을 이용한 영구자석형 선형 동기전동기 동특성 해석)

  • Kwon, Byung-Il;Ryu, Se-Hyun;Woo, Kyung-Il;Park, Seong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.25-28
    • /
    • 1996
  • This paper deals with the dynamic characteristic analysis of a linear synchronous motor with surface type permanent magnets using time-stepped finite clement method. The secondary back-iron conductivity is considered in the field analysis. As a result, we can investigate dynamic characteristics as well as some performances like attractive force and input power.

  • PDF

Design and Dynamic Analysis of Permanent Magnet Linear Synchronous Machine for Servo Application (서보 시스템 적용을 위한 직선형 영구자석 동기 전동기의 설계 및 동특성)

  • Jang, Seok-Myeong;You, Dae-Joon;Jang, Won-Bum;Park, Ji-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.135-137
    • /
    • 2005
  • In servo system demanding precision dynamic characteristics, application of the Permanent Magnet Linear Synchronous Machines (PMLSM) has advantage of analysis convenience by simple geometry and thrust ripple reduction from the sinusoidal back electromotive force and excited stator. Therefore, this paper presents design of surface-mounted PMLSM with slotless iron cored stator according to coil turns to satisfy the rate thrust. Also, from dynamic analysis for servo application of manufactured motor with heavy mass, we offer accurate range of the DC link voltage and acceleration in rate speed. This is applied to speed reference profile considering system characteristics in total length of moving position.

  • PDF

Experiment and analysis of dynamic coupling phenomenon in a seat (시트에서 발생하는 동적 커플링 현상 실험 및 분석)

  • Min, Kyongwon;Kim, Deokman;Park, Hyunkyu;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.1004-1006
    • /
    • 2014
  • This study was conducted to improve the understanding of factors affecting an automobile seat cushion in dynamic conditions. When there are two dummies on the seat to measure each places respectively at once, the shape of the transfer function changes because the dummies affect each other as if they are linked with some kind of a spring when under excitation. A simple two-degree-of-freedom linear model is used to define a translational stiffness of dynamic coupling phenomenon. The cushion deflection model was created to find the relation between dynamic coupling and distance. Experimental set-up was made to compare with the two-degree-of-freedom linear model. The dynamic coupling factor could be utilized to improve the dynamic comfort of automobile seats.

  • PDF

Non-linear Control of Turbojet Engine for High Maneuverability UAV (고기동 무인항공기용 터보제트엔진의 비선형 제어)

  • Han, Dong-Ju;Oh, Seong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.431-438
    • /
    • 2012
  • Non-linear turbojet engine controller with high operational performance has been designed for the high maneuverability UAV. The turbojet engine dynamic performance code has been developed to reflect the non-linear characteristics on controller design, by which the necessity of non-linear controller design was justified by investigating the limitation of linear model derived from the dynamic performance. The PI-like fuzzy controller was designed and enhanced by combining with conventional derivative control. This designed fuzzy controller proves its effectiveness by showing superior control performances over the conventional PID controller along with guaranteeing the safe operation within compressor surge, flame out and turbine temperature limits etc.

Verification of Modified Equivalent Linear Analysis Through Case Study (수정된 등가선형 해석 기법의 사례를 통한 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.273-276
    • /
    • 2008
  • Equivalent linear method indirectly reflects a variation of shear modulus(G/Gmax) and damping ratio $(\xi)$ by selects mean value of every response analysis. Existing equivalent linear method does not properly consider variation of shear strain along frequencies and uses mean value. Real dynamic soil behavior is affected by shear stiffness and damping ratio. Modified equivalent linear method is developed to consider variation. Modified equivalent linear method can reflects high strain at low frequency and low strain at high frequency by using an easement curve. This study presents propriety of method by case study.

  • PDF

Dynamic Stall Control Using Aerodynamic Sensitivity Analysis (민감도 해석을 이용한 동적실속 제어)

  • Ahn, Tai-Sul;Kim, Hyoung-Jin;Kim, Chong-Am;Rho, Oh-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.10-20
    • /
    • 2002
  • The present paper investigates methods to control dynamic stall using an optimal approach. An unsteady aerodynamic sensitivity analysis code is developed by a direct differentiation method from a two-dimensional unsteady compressible Navier-Stokes solver including a two-equation turbulence model. Dynamic stall control is conducted by minimizing an objective function defined at an instant instead of integrating for a period of time. Unsteady sensitivity derivatives of the objective function are calculated by the sensitivity code, and optimization is carried out using a linear line search method at every physical time step. Numerous examples of dynamic stall control using control parameters such as nose radius, maximum thickness of airfoil, or suction show satisfactory results.

A dynamic foundation model for the analysis of plates on foundation to a moving oscillator

  • Nguyen, Phuoc T.;Pham, Trung D.;Hoang, Hoa P.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1019-1035
    • /
    • 2016
  • This paper proposes a new foundation model called "Dynamic foundation model" for the dynamic analysis of plates on foundation subjected to a moving oscillator. This model includes a linear elastic spring, shear layer, viscous damping and the special effects of mass density parameters of foundation during vibration. By using finite element method and the principle of dynamic balance, the governing equation of motion of the plate travelled by the oscillator is derived and solved by the Newmark's time integration procedure. The accuracy of the algorithm is verified by comparing the numerical results with the other numerical results in the literature. Also, the effects of mass and damping ratio of system components, stiffness of suspension system, velocity of moving oscillator, and dynamic foundation parameters on dynamic responses are investigated. A very important role of these factors will be shown in the dynamic behavior of the plate.