• Title/Summary/Keyword: Linear dynamic analysis

Search Result 1,367, Processing Time 0.032 seconds

An application of fourier spectral analysis to the analysis of linear dynamic systems coupled with nonlinear elements (비선형 요소가 결합된 선형역학시스템의 해석에의 Fourier 스펙트럼 해석기법의 응용)

  • 성단근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.61-64
    • /
    • 1986
  • The Fourier Spectral Analysis has been widely utilized in the analysis of linear dynamic systems. However, it may not be generaly extended to analyze nonlinear systems. In this paper, a linear underlying dynamic structure coupled with nonlinear elements is analyzed by using newly derived equations of motion after the linear dynamic structure is characterized by the Fourier spectral analysis.

  • PDF

A performance based strategy for design of steel moment frames under blast loading

  • Ashkezari, Ghasem Dehghani
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.155-164
    • /
    • 2018
  • Design of structures subjected to blast loads are usually carried out through nonlinear inelastic dynamic analysis followed by imposing acceptance criteria specified in design codes. In addition to comprehensive aspects of inelastic dynamic analyses, particularly in analysis and design of structures subjected to transient loads, they inherently suffer from convergence and computational cost problems. In this research, a strategy is proposed for design of steel moment resisting frames under far range blast loads. This strategy is inspired from performance based seismic design concepts, which is here developed to blast design. For this purpose, an algorithm is presented to calculate the capacity modification factors of frame members in order to simplify design of these structures subjected to blast loading. The present method provides a simplified design procedure in which the linear dynamic analysis is preformed, instead of the time-consuming nonlinear dynamic analysis. Nonlinear and linear analyses are accomplished in order to establish this design procedure, and consequently the final design procedure is proposed as a strategy requiring only linear structural analysis, while acceptance criteria of nonlinear analysis is implicitly satisfied.

Design and Analysis of a Linear Feeder using Computer Simulation (컴퓨터 시뮬레이션을 이용한 리니어 피더의 설계 및 분석)

  • Lee, Kyu-Ho;Kim, Sung-Hyun;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.749-753
    • /
    • 2007
  • The purpose of this study is to design of a linear feeder using a multi body dynamic program, and to analyze a dynamic motion of the feeder that can transport small mechanical parts uniformly. In order to establish the analysis model of the linear feeder, each parts of the feeder are divided into two types which the rigid and flexible body. For the dynamic simulation, RecurDyn, which is a commercial multi-body dynamic package, is used. We also consider the design parameters for optimal dynamic motion such as centroid, stiffness, and mass of the feeder system. In order to analyze the dynamic motion of a linear feeder, the displacements of the feeder are measured by several accelerometers when it is in an operating condition. After the signal data from the accelerometers are captured in the time domain, the dynamic motion in the space is visualized by using graphic computer software.

  • PDF

수직방향 집중하중 상태의 외팔보 거동에 대한 선형 및 비선형적 해석 비교

  • Go, Jeong-U;Bin, Yeong-Bin
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.239-245
    • /
    • 2015
  • In this paper, to examine the difference between the linear and non-linear static, dynamic analysis for a structure, a cantilevered beam was used. Then, an external transverse static and dynamic loads were applied at the free end of the beam. Classical theories were used for the linear analysis and the EDISON CSD solver, co-rotational dynamic FEM program, was used for nonlinear analysis. In the static analysis, effects of the load for the beam deflection were observed in the linear and nonlinear analysis. Then, normalized displacement of tip of the beam was predicted for different frequency ration and a significant difference was obtained in the vicinity of the resonant frequency. In addition, effects of frequency and time for the beam deflection were investigated to find the frequency delay.

  • PDF

Linear Analysis and Non-linear Analysis with Co-Rotational Formulation for a Cantilevered Beam under Static/Dynamic Tip Loads (정적 및 동적 하중을 받는 외팔보 거동에 관한 선형 및 CR 정식화 비선형 예측의 비교)

  • Ko, Jeong-Woo;Bin, Young-Bin;Eun, Won-Jong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.467-475
    • /
    • 2015
  • In this paper, the behaviour of a cantilevered beam was predicted to examine the difference between linear and non-linear static, dynamic analysis for a structure by using CR nonlinear formulation. Then, external transverse static and dynamic loads were applied at the free tip of the beam. Classical theories were used for the present linear analysis and co-rotational dynamic FEM program was used for the present nonlinear analysis. In the static analysis, effects of the load for the beam deflection were observed in both linear and nonlinear analysis. Then, normalized displacement at the tip of the beam was predicted for different frequency ratio and a significant difference was obtained in the vicinity of the resonant frequency. In addition, effects of frequency and time for the beam deflection were investigated to find the frequency delay.

Force Characteristic Analysis of Linear Switched Reluctance Motor using Dynamic Simulation (동특성 시뮬레이션을 이용한 리니어 스위치드 릴럭턴스 전동기의 힘 특성 해석)

  • Jang, Seok-Myeong;Park, Ji-Hoon;Park, Yu-Seop;Kim, Jin-Soon;Choi, Ji-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.58-60
    • /
    • 2009
  • This paper deals with force characteristic analysis of linear switched reluctance motor using dynamic simulation. First, we calculated flux density of linear switched reluctance motor according to position. Second, analyzed normal force from flux density of linear switched reluctance motor according to position. Also, analysis result compares with data that is derived through a finite element analysis, and proved validity. However, linear switched reluctance motor has non linear characteristic, hence, analysis of propulsion force do not easy using analytical method. Therefore, we presented dynamic characteristic analysis model which is consisted at motor and sensor signal part, etc., and substitute circuit constant that get using magnetic equivalent circuit method, we confirmed propulsion force.

  • PDF

The Effect of the Flame Cutting of a Tendon on the Surrounding Concrete in Pretensioned Prestressed Member (용접 절단에 의한 긴장력 도입 방법이 프리텐션 부재의 콘크리트 응력에 미치는 영향 분석)

  • Kim, Jang-Ho;Moon, Do-Young;Zi, Goang-Seup;Kim, Gyu-Seon;Park, Kyoung-Lae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.368-373
    • /
    • 2008
  • This paper describes the dynamic shock effects on the pretensioned concrete member by the detensioning using finite element analysis. The investigation was performed by linear and nonlinear dynamic analysis. In nonlinear dynamic analysis, Brittle Cracking Model was applied for concrete behavior. It was shown that the amplitude of stress wave was significantly decreased when time for cutting of tendon was above 0.05sec. The maximum stress values obtained from linear and nonlinear dynamic analysis was nearly same. However, the position forthe maximum tensile stresses were different.

  • PDF

A Strength Analysis of a Hull Girder in a Rough Sea

  • Kim, Sa-Soo;Shin, Ku-Kyun;Son, Sung-Wan
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.79-105
    • /
    • 1994
  • A ship in waves is suffered from the various wave loads that comes from its motion throughout its life. Because these loads are dynamic, the analysis of a ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship motion calculation as a rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, compared with ship's depth, induce the large ship motion, so the ship section configuration under waterline is rapidly changed at each time. This results in a non-linear problem. Considering above situation in this paper, a strength analysis method is introduced for the hull girder among waves considering non-linear hydrodynamic forces. This paper evaluates the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom flare impact forces by momentum slamming theory. For numerical calculation a ship is idealized as a hollow thin-walled box beam using thin walled beam theory and the finite element method is used. This method applied to a 40,000 ton double hull tanker and attention is paid to the influence of the response of the ship's speed, wave length and wave height compared with the linear strip theory.

  • PDF

Dynamic Analysis of an Automatic Dynamic Balancer in a Rotor with the Bending Flexibility (축의 굽힘효과를 고려한 회전체에 장착된 자동평형장치의 동적해석)

  • Jeong, Jin-Tae;Bang, In-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1125-1130
    • /
    • 2001
  • Dynamic behaviors of an automatic dynamic balancer are analyzed by a theoretical approach. Using the polar coordinates, the non-linear equations of motion for an automatic dynamic balancer equipped in a rotor with the bending flexibility are derived from Lagrange equation. Based on the non-linear equation, the stability analysis is performed by using the perturbation method. The stability results are verified by computing dynamic response. The time responses are computed from the non-linear equations by using a time integration method. We also investigate the effect of the bending flexibility on the dynamics of the automatic dynamic balancer.

Dynamic Analysis of Linear Switched Reluctance Motor considering Electromagnetic Characteristics (직선형 스위치드 릴럭턴스 전동기의 전자기 특성을 고려한 동특성 해석)

  • Jang, Seok-Myeong;Park, Ji-Hoon;Ko, Kyoung-Jin;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.611_612
    • /
    • 2009
  • This paper deals with dynamic analysis of linear switched reluctance motor considering electromagnetic characteristics. First, inductance profile of linear switched reluctance motor calculate at align and unalign position and phase resistance using analytical method. Analytical method of this paper used space harmonics method, also, analysis result compares with data that is derived through an finite element method, and proved validity. In dynamic simulation of linear switched reluctance, we analyzed dynamic characteristic of linear switched reluctance motor according to single pulse waveform and hard chopping voltage PWM.

  • PDF