• Title/Summary/Keyword: Linear development

Search Result 3,192, Processing Time 0.029 seconds

Development of the linear motor driver with high speed and stiffness based on SERCOS (SERCOS 기반의 고속 고강성 이송시스템 드라이버 개발)

  • 최정원;김상은;이기동;박정일;이석규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.64-68
    • /
    • 1997
  • In this paper, a controller for the linear motor with high speed and stiffness is implemented using SERCOS interface which is a real time communication protocol between the numerical controller(NC) and the motor driver. The proposed controller is mainly composed of current, speed, and position controller, which are designed using the 32-bit DSP(TMS320C31), a high-integrated logic device (EPM7128), and Intelligent Power Module(IPM) to enhance reliability and compactness of the system. The experimental results show the effective performance of the proposed controller for he linear motor with high speed and stiffness.

  • PDF

Modeling or an Engine System for Idle Speed Control (공회전 속도제어를 위한 엔진 시스템 모델)

  • Jo, Jang-Won;Lee, Youn-Seop;Lee, Deog-Kyoo;Choi, Don;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.430-433
    • /
    • 1989
  • This paper describes dynamic engine model that is appricable to idle speed control system development. A basic linear engine model responds to throttle and load torque Inputs to provide manifold pressure and speed outputs. Transfer functions are then derived for the modified linear engine model and significant dynamic characteristics are discussed. Lastly, the strategy for controlling idle speed uses the linear optimal control theory. The linear optimal regulator was designed using a state variable and the performance Index was minimized.

  • PDF

Linear Discriminant Clustering in Pattern Recognition

  • Sun, Zhaojia;Choi, Mi-Seon;Kim, Young-Kuk
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.717-718
    • /
    • 2008
  • Fisher Linear Discriminant(FLD) is a sample and intuitive linear feature extraction method in pattern recognition. But in some special cases, such as un-separable case, one class data dispersed into several clustering case, FLD doesn't work well. In this paper, a new discriminant named K-means Fisher Linear Discriminant, which combines FLD with K-means clustering is proposed. It could deal with this case efficiently, not only possess FLD's global-view merit, but also K-means' local-view property. Finally, the simulation results also demonstrate its advantage against K-means and FLD individually.

  • PDF

Development of Linear DC Motor Pilot Model for High Thrust (고추력용 리니어직류모터 Pilot 모델 개발)

  • 정재한;서경일;박재완;박재한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1002-1005
    • /
    • 2000
  • The goal of this study is to develop a linear DC motor with high thrust, speed and stiffness for machine tool. In the first phase of this study, We has made a pilot model and measuring system. Using the measuring system, We could finished the performance test of the pilot model, which continuous thrust is 1, 391N. Experimental values agree with the theoretical results well. In a certain sense, We are expecting the realization of linear motor with continuous thrust of 6, 000 to 7, 000N next time.

  • PDF

Development of a profile measuring system for conductor roll (전기도금 롤의 형상 측정시스템 개발)

  • Choi, Yong-Jun;Jun, Sung-Bai;Lee, Eung-Suk;Kim, Hyo-Sung;Jang, Ji-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1730-1741
    • /
    • 1997
  • In this paper, we developed a surface profile measuring system and a profile measuring software for EGL conductor roll. For the profilemeter, we designed a linear guided control system with Laser displacement sensors and developed a 3-dimensional software. Additionally, the AC motor and AC motor driver were used to control the precise position of linear guide system. The measuring principle of the Laser sensor is optical triangulation method. Also, two Laser sensors were used to remove the disturbance and vibration effects of the linear guide system.

Development of Biaxial Tension & Shear Tester using Stepper Motor with Harmonic Driver (감속 스텝모터를 이용한 2축 인장·전단 시험기의 개발)

  • Choi, Byung-Sun;Bae, Won-Ho;Chai, Young-Suck
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.379-386
    • /
    • 2001
  • The lower toughness or brittle materials for mechanical test lead to the additional requirement that applied displacements be controlled with high resolution. Biaxial tension and shear tester using stepper motor with harmonic driver is shown. The device had to be high resolution so that the crack initiation process of slow extension and steady growth could be examined, Grip plates were connected to a linear bearing and actuator. The actuators consisted of stepper motors with harmonic driver connected to pre-loaded ball screw and nut assemblies. The encoders and motor controllers were connected to a personal computer so that arbitrary displacements histories could he prescribed in normal and tangential directions. The linear bearings were used to react loads perpendicular to their axes while allowing low friction, parallel movement of the attached grips. Load cells measured the reactions normal and tangential. the loads measured the reactions were recorded by the computer.

  • PDF

Development of High Speed Feed System using Linear Motor (리니어모터 응용 고속이송계 제어기술 개발)

  • 유송민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.973-976
    • /
    • 2000
  • A brushless linear motor is suitalbe fur a high-accuracy servo mechanism. It is also suitable for operation with higher speed and precision. Since it does not involve some sort of mechanical coupling, linear driving force can be applied directly. Basic models including magetomotive farce and electromotive forces are introduced and simplified. Both conventional PID and fuzzy controllers are implemented and performance results using those controllers are compared. Along with better simulated performance observed using fuzzy controller, further fabrication is to be included with various empirical results. Typical nonlinearities as friction, cogging and torque or thrust ripple that might deteriorate system performance would be tackled using presumably effective method such as neural network based learning controller.

  • PDF

Fatigue Assessment of Very Large Container Ships Considering Springing Effect Based on Stochastic Approach

  • Jung, Byoung-Hoon;Ahn, In-Gyu;Seo, Sun-Kee;Kim, Beom-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.120-127
    • /
    • 2020
  • Evaluation of fatigue strength considering the springing effect of very large container ships is crucial in the design stage. In this study, we established a fatigue strength evaluation method considering a linear springing component in the frequency domain. Based on a three-dimensional global model, a fluid-structure interaction analysis was performed and the modal superposition method was applied to determine the hot spot stress at the hatch corner of very large container ships. Fatigue damage was directly estimated using the stress transfer function with a linear springing response. Furthermore, we proposed a new methodology to apply the springing effect to fatigue damage using hull girder loads. Subsequently, we estimated the fatigue damage contribution due to linear springing components along the ship length. Finally, we discussed the practical application of the proposed methods.

A Position Decision Experiment in Ball-screw Driven Linear Stage using a Photomicrosensor (포토 마이크로 센서를 이용한 볼나사 구동 리니어 스테이지의 위치결정 실험)

  • Cha, Young-Youp
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.463-467
    • /
    • 2014
  • High precision machining technology has become one of the most important parts in the development of a precision machine. Such a machine requires high precision positioning as well as high speed on a large workspace. For machining systems having high precision positioning with a long stroke, it is necessary to examine the repeatability of the reference position decision. Though ball-screw driven linear stages equipped with linear scale have high precision feed drivers and a long stroke, they have some limitations for reference position decisions if they have not been equipped with an accurate home sensor. This study is performed to experimentally examine the repeatability for home position decision of a photo micro sensor as a home switch of a ball-screw driven linear stage by using a capacitance probe.

Development of Iron Core Type Linear Motor for Machine Tool (공작기계용 철심형 리피어모터 기술 개발)

  • Joung, Jae-Han;Park, Jae-Wan;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.82-89
    • /
    • 2002
  • There is an intensifying demand fur linear motors in vast range of industry applications such as in factory automation and semi-conductor manufacturing equipment due to their high positioning accuracy, high static stiffness, high thrust and excellent dynamic characteristics. This paper presents an iron core type linear motor for machine tool whose rated thrust is up to 6000N. For electromagnetic field and dynamic analysis, finite element method (FEM) is implemented to predict motor performance. Various design parameters are considered to reduce thrust ripple and to improve dynamic performance with the least sacrifice of effective thrust. Experimental results on thrust and static stiffness are also followed to confirmed the validity of the analysis.