• 제목/요약/키워드: Linear controller

검색결과 2,081건 처리시간 0.033초

리니어펄스모터의 제어 성능 향상을 위한 신경 회로망을 이용한 전류 제어기 설계 (Design of Current Controller for Performance Improvement of Linear Pulse Motor Using Neural Networks)

  • 박종범;박정일;이석규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.486-489
    • /
    • 1998
  • In this paper, we introduced the neural network to reduce force ripple of current controller for a linear pulse motor. In general, conventional position controllers of linear pulse motor disregard the modeling error and load variations, which cause inaccuracy in position control. The proposed current controller based on neural network teaming modifies the current commands in order to reduce force ripple due to these factors. The experiment results show that the proposed controller works efficiently for accurate position control of linear pulse motor.

  • PDF

LQ관측기를 사용한 새로운 누적방지 기법 (A New Anti-windup Method Using the Linear Quadratic Observer)

  • 김태신;양지혁;권오규
    • 제어로봇시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.134-139
    • /
    • 2010
  • In order to overcome some problems of existing anti-windup methods, this paper defines LQ (Linear Quadratic) observer and proposes a new anti-windup method using the LQ observer. LQ observer is derived by linear quadratic optimization in order to calculate controller states, which make the controller outputs equal to the plant inputs. And we propose an algorithm so that it can be implemented by a digital controller easily. The relationship between the design parameters and the anti-windup performance is shown via some numerical examples, which cover the cases with the anti-windup method using LQ observer designed and the case without it. Finally, the anti-windup performance of the proposed method is exemplified via comparison with the existing model-based conditioning scheme method[4].

복합가공기용 리니어 모터 시스템의 제어 연구 (A Study on the Control of a Linear Motor System of the Universal Machining Center)

  • 공경철;전도영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.94-99
    • /
    • 2005
  • Though the technology on the ultra-precise machining has been developed intensively, the high speed and high precision for large machining range is still very hard to achieve. The linear motor system fur the universal machining center is proper fur high speed and high precision, but it has drawback of sensitivity to disturbance. In this research, two degrees of freedom controller based on the zero phase error tracking controller (ZPETC) and disturbance observer are proposed to improve the tracking performance and dynamic stiffness of linear motor system. The proposed controller is verified in simulations and experiments on a nano-positioner system, and the experimental result shows that the tracking performance improved. In addition, the PID optimization method is proposed for the commercialized controller such as the PMAC based system. The tracking as well as impedance is included in the cost function of optimization.

  • PDF

Discrete-Time Sliding Mode Controller for Linear Time-Varying Systems with Disturbances

  • Park, Kang-Bak
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권4호
    • /
    • pp.244-247
    • /
    • 2000
  • In this paper, a discrete-time sliding mode controller for linear time-varying systems with disturbances is proposed. The proposed method guarantees the systems state is globally uniformly ultimately bounded(G.U.U.B) under the existence of time-varying disturbances.

  • PDF

Angle and Position Control of Inverted Pendulum on a Cart Using Partial Feedback Linearization

  • Yeom, Dong-Hae;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1382-1386
    • /
    • 2003
  • In this paper, we propose a controller for the position of a cart and the angle of a pendulum. To achieve both purposes simultaneously, we divide the system into the dominant subsystem and the dominated one after partial feedback linearization. The proposed controller is composed of a nonlinear controller stabilizing the dominant subsystem and a linear quadratic controller. Using the proposed controller, the controllable region is increased by the nonlinear control part and the control input minimized by the linear control part (LQR).

  • PDF

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

이중 학습에 의한 선형동기모터의 위치제어 (Position Control of Linear Synchronous Motor by Dual Learning)

  • 박정일;서성호;울루구벡
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.79-86
    • /
    • 2012
  • This paper proposes PID and RIC (Robust Internal-loop Compensator) based motion controller using dual learning algorithm for position control of linear synchronous motor respectively. Its gains are auto-tuned by using two learning algorithms, reinforcement learning and neural network. The feedback controller gains are tuned by reinforcement learning, and then the feedforward controller gains are tuned by neural network. Experiments prove the validity of dual learning algorithm. The RIC controller has better performance than does the PID-feedforward controller in reducing tracking error and disturbance rejection. Neural network shows its ability to decrease tracking error and to reject disturbance in the stop range of the target position and home.

도립진자 시스템에 선형 분수 표현법을 이용한 $H_2/ H_\infty$ 제어 (The $H_2/ H_\infty$ control of inverted pendulum system using linear fractional representation)

  • 곽칠성;최규열
    • 한국정보통신학회논문지
    • /
    • 제3권4호
    • /
    • pp.875-885
    • /
    • 1999
  • This paper presents an application of LMI-based techniques to the mixed $H_2/ H_\infty$ control of an inverted pendulum. The linear model of the inverted pendulum represented by an LFR(Linear Fractional Representation) model of uncertainties is derived. Considered uncertainties are three nonlinear components and a parameter uncertainty Augmenting the LFR model by adding weighting functions, we get a generalized plant, for which we design a mixed $H_2/ H_\infty$ controller using the LMI technique. To evaluate control performances and robust stability of the mixed $H_2/ H_\infty$ controller designed, we compare it with the $ H_\infty$controller through the simulation and experiment. The mixed $H_2/ H_\infty$ controller shows the better control performances and robust stability than the $H_\infty$controller in the sense of pendulum angle.

  • PDF

이득 설계가 간단한 선형전동기 구동용 고성능 통합 PID 위치제어기 구현 제2부: 이득설계 및 응용 (Implementation of the High Performance Unified PID Position Controller for Linear Motor Drive with Easy Gain Ajustment Part II - Gain Adjustment & Application)

  • 김준석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권4호
    • /
    • pp.195-202
    • /
    • 2002
  • The high performance position controller named 'Unified PID Position Controller'is presented in part 1 of this paper. In part 2, we provide smart gain adjustment methods including the freedom utilizations for rare sensitivity toward the system parameter variation and for increasing the stiffness of the system. Owing to the provided gain tuning strategy, the overall system characteristics can be stabilized without over-shoot phenomena when the system parameter is changed in the rate of from 0.5 to 2∼4. Moreover, for the actual feasibility to the industrial fields, a simple butt effective anti-windup strategy prohibiting the integral component of the PID position controller from saturation is presented too. All of the presented algorithms are verified through the experiment works with commercial linear motor.

Robust ILQ controller design of hot strip mill looper system

  • Kim, Seong-Bae;Hwang, I-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.75.5-75
    • /
    • 2001
  • In this paper, we study design of a ILQ(Inverse Linear Quadratic optimal control) looper control system for hot strip mills. The looper which is placed between stands plays an important role in controlling strip width by regulating strip tension variation generated from the velocity difference of main work rolls. A Looper servo controller is designed by ILQ control theory which is an inverse problem of LQ(Linear Quadratic optimal control) control. The mathematical model for looper system is obtained by Taylor´s linearization of nonlinear differential equations. Then we designed linear controller for linearization model by using the ILQ control algorithm. Thereafter this controller is applied to the nonlinear model for model identification. As a result, we show the controller´s robustness for the model error, external disturbance and sensor noise.

  • PDF