• 제목/요약/키워드: Linear combination analysis

Search Result 362, Processing Time 0.032 seconds

A Goal Programming Model for Guard Soldier Scheduling (목표계획법을 이용한 경계부대 근무편성에 관한 연구)

  • Kim, Hak-Young;Ryoo, Hong-Seo
    • Journal of the military operations research society of Korea
    • /
    • v.32 no.2
    • /
    • pp.21-39
    • /
    • 2006
  • This paper presents a mixed linear and integer goal programming (GP) model to aid in strategic planning and scheduling of guard soldiers. The proposed model is a general-purpose model, hence can be used to produce an optimal schedule with respect to any user-provided combination of guard post objectives and soldier preferences. We extensively test the usefulness of the model on a real-life dataset from a guard post in the ROK Army with using three objectives set by the guard post and three preferences provided by individual solders. Numerical results and analysis from these experiments show that the proposed guard scheduling model efficiently as well as effectively generates an optimal guard schedule and can also be used for an optimal revision of any existing schedule. In summary, these illustrate that the proposed model can be practically used for optimal planning and scheduling of guard soldiers in guard posts.

Partial Layerwise-to-ESL Coupling Elements for Multiple Model Analysis (다중모델 해석을 위한 부분층별-등가단층 결합요소)

  • Shin, Young-Sik;Woo, Kwang-Sung;Ahn, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.267-275
    • /
    • 2009
  • This paper presents the p-convergent coupling element on the basis of the ESSE(equivalent single layer shell element) and the PLLE(partial-linear layerwise element) to analyze laminated composite plates. The ESSE is formulated by the degenerated shell theory, on the other hand, the assumption of the PLLE is piecewise linear variation of the in-plane displacement and a constant value of lateral displacement across the thickness. The proposed finite element model is based on p-convergence approach. The integrals of Legendre polynomials and Gauss-Lobatto technique are chosen to interpolate displacement fields and to implement numerical quadrature, respectively. This study has been focused on the verification of p-convergent element. For this purpose, various finite element multiple models associated with the combination of ESSE and PLLE elements are tested to show numerical stability. The simple examples such as a cantilever beam subjected vertical load and a plate with tension are adopted to evaluate the performance of proposed element.

A merging framework for improving field scale root-zone soil moisture measurement with Cosmic-ray neutron probe over Korean Peninsula

  • Nguyen, Hoang Hai;Choi, Minha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.154-154
    • /
    • 2019
  • Characterization of reliable field-scale root-zone soil moisture (RZSM) variability contribute to effective hydro-meterological monitoring. Although a promising cosmic-ray neutron probe (CRNP) holds the pontential for field-scale RZSM measurement, it is often restricted at deeper depths due to the non-unique sensitivity of CRNP-measured fast neutron signal to other hydrogen pools. In this study, a merging framework relied on coupling cosmic-ray soil moisture with a representative additional RZSM, was introduced to scale shallower CRNP effective depth to represent root-zone layer. We tested our proposed framework over a densely vegetated region in South Korea covering a network of one CRNP and nine in-situ point measurements. In particular, cosmic-ray soil moisture and ancillary RZSM retrieved from the most time stable location were considered as input datasets; whereas the remaining point locations were used to generate a reference RZSM product. The errors between these two input datasets and the reference were forecasted by a linear autoregressive model. A linear combination of forecasts was then employed to compute a suitable weight for merging two input products from the predicted errors. The performance of merging framework was evaluated against reference RZSM in comparison to the two original products and a commonly used exponential filter technique. The results of this study showed that merging framework outperformed other products, demonstrating its robustness in improving field-scale RZSM. Moreover, a strong relationship between the quality of input data and the performance merging framework in light of CRNP effective depth variation has been also underlined via the merging framework.

  • PDF

The value and utilization of Pyojihwajomoonkeum (silk fabric with lingering flowers and bird patterns) - Focusing on Baekje cultural area storyteller clothing - (표지화조문금(縹地花鳥紋錦)의 가치와 활용 - 백제문화권 스토리텔러복을 중심으로 -)

  • Ra, Sun-Jung
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.2
    • /
    • pp.147-153
    • /
    • 2021
  • Baekje patterned Pyojihwajomoonkeum is a fabric that expresses Baekje's unique culture possessed by Shosoin(正倉院) in Japan. Reflecting the close exchange relationship with the Chinese Southern Dynasties, these patterns are suitable as good examples to grasp the forms and atmosphere that prevailed during that era. Through the analysis of many pieces, it has been identified that the patterns were unique to Baekje. With an aim to ascertain and restore the original form of Pyojihwajomoonkeum, designs were proposed utilizing Pyojihwajomoonkeum as a form of storyteller clothing that fits the modern sense. Fabric was designed by continuously repeating the colors and patterns of Pyojihwajomoonkeum upward, downward, leftward, and rightward and woven with a Jacquard loom. The fabric woven was dried, processed, and used to make a total of four pieces of storyteller clothing consisting of men's wear, comprising a jeogori and pants, and women's wear comprising a jeogori and skirt. The top jacket was long enough that the hip is covered. It has wide sleeves and linear decorations were attached to the collar, lower edge of sleeve, and bottom hem. The pants are wide legged, the top is wide, and the bottom hem had linear decorations attached. What is the most important when using the original form of a traditional culture is processing the raw materials following cultural traditions to create value. Costumes of an era are the combination of individual elements and represent the culture of that era. Therefore, a consideration of the origin and prevailing ideas of the era must be considered. It is anticipated that this paper will serve as a basis for leading such a process, followed by studies on the utilization of the original form of Baekje culture.

A Simple Model of Shrinkage Cracking Development for Kaolinite (수축 균열 발달 과정을 위한 단순 모델)

  • Min, Tuk-Ki;Nhat, Vo Dai
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.9
    • /
    • pp.29-37
    • /
    • 2007
  • The experiments have been conducted on Kaolinite in laboratory to investigate the development of shrinkage cracking and propose a simple model. Image analysis method consisting of control point selection(CPS) technique is used to process and analyze images of soil cracking captured by a digital camera. The distributions of crack length increment and crack area increment vary as a three-step process. These steps are regarded as stages of soil cracking. They are in turn primary crack, secondary crack and shrinkage crack stages. In case of crack area, the primary and secondary stages end at normalized gravimetric water content(NGWC) of 0.92 and 0.70 for different specimen thicknesses respectively. In addition, the primary stage in case of crack length also ends at NGWC of 0.92 while the secondary stage stops at NGWC of 0.79, 0.82, and 0.85 for the sample thicknesses of 0.5, 1.0, and 2.0 cm respectively Based on the experimental results, the distributions of crack length increment and crack area increment appear to be linear with a decrease of NGWC. Therefore, the development of shrinkage cracking is proposed typically by a simple model functioned by a combination of three linear expressions.

Formant Synthesis of Haegeum Sounds Using Cepstral Envelope (캡스트럼 포락선을 이용한 해금 소리의 포만트 합성)

  • Hong, Yeon-Woo;Cho, Sang-Jin;Kim, Jong-Myon;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • This paper proposes a formant synthesis method of Haegeum sounds using cepstral envelope for spectral modeling. Spectral modeling synthesis (SMS) is a technique that models time-varying spectra as a combination of sinusoids (the "deterministic" part), and a time-varying filtered noise component (the "stochastic" part). SMS is appropriate for synthesizing sounds of string and wind instruments whose harmonics are evenly distributed over whole frequency band. Formants extracted from cepstral envelope are parameterized for synthesis of sinusoids. A resonator by Impulse Invariant Transform (IIT) is applied to synthesize sinusoids and the results are bandpass filtered to adjust magnitude. The noise is calculated by first generating the sinusoids with formant synthesis, subtracting them from the original sound, and then removing some harmonics remained. Linear interpolation is used to model noise. The synthesized sounds are made by summing sinusoids, which are shown to be similar to the original Haegeum sounds.

Generalization of Integration Methods for Complex Inelastic Constitutive Equations with State Variables (상태변수를 갖는 비탄성 구성식 적분법의 일반화)

  • Yun, Sam-Son;Lee, Sun-Bok;Kim, Jong-Beom;Lee, Hyeong-Yeon;Yu, Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1075-1083
    • /
    • 2000
  • The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. These equations consist of the definition of inelastic strain and the evolution of the state variables introduced to quantify the irreversible processes occurred in the material. With respect to the definition of the inelastic strain, the inelastic constitutive models can be categorized into elastoplastic model, unified viscoplastic model and separated viscoplastic model and the different integration methods have been applied to each category. In the present investigation, the generalized integration method applicable for various types of constitutive equations is developed and implemented into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using line-search technique in combination with Newton method. The strategy to control the time increment for the improvement of the accuracy of the numerical integration is proposed. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method. The prediction of the inelastic behavior of the structure is an essential part of reliability assessment procedure, because most of the failures are induced by the inelastic deformation, such as creep and plastic deformation. During decades, there has been much progress in understanding of the inelastic behavior of the materials and a lot of inelastic constitutive equations have been developed. These equations consist of the definition of inelastic strain and the evolution of the state variables introduced to quantify the irreversible processes occurred in the material. With respect to the definition of the inelastic strain, the inelastic constitutive models can be categorized into elastoplastic model, unified viscoplastic model and separated viscoplastic model and the different integration methods have been applied to each category. In the present investigation, the generalized integration method applicable for various types of constitutive equations is developed and implemented into ABAQUS by means of UMAT subroutine. The solution of the non-linear system of algebraic equations arising from time discretization with the generalized midpoint rule is determined using line-search technique in combination with Newton method. The strategy to control the time increment for the improvement of the accuracy of the numerical integration is proposed. Several numerical examples are considered to demonstrate the efficiency and applicability of the present method.

A Study on the Sloshing Impact Response Analysis for the Insulation System of Membrane Type LNG Cargo Containment System (LNG 탱크 방열구조의 슬로싱 충격 응답 해석법에 관한 연구)

  • Nho, In-Sik;Ki, Min-Seok;Lee, Jae-Man;Kim, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.531-538
    • /
    • 2011
  • To ensure the structural integrity of membrane type LNG tank, the rational assessment of impact pressure and structural responses due to sloshing should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the structural responses caused by them also very complex behaviors including fluid structure interaction. So it is not easy to estimate them accurately and huge time consuming process would be necessary. In this research, a simplified method to analyze the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was proposed. This technique basically based on the concept of linear combination of the triangular response functions which are obtained by the transient response analysis under the unit triangular impact pressure acting on structures in time domain. The validity of suggested method was verified through the example calculations and applied to the structural analysis of real Mark III type insulation system using the sloshing impact pressure time histories obtained by model test.

  • PDF

Analysis of PRC regeneration algorithm performance in dynamic environment by using Multi-DGPS Signal (다중 DGPS 신호를 이용한 동적 환경에서의 PRC 재생성 알고리즘 성능분석)

  • Song Bok-Sub;Oh Kyung-Ryoon;Kim Jeong-Ho
    • The KIPS Transactions:PartA
    • /
    • v.13A no.4 s.101
    • /
    • pp.335-342
    • /
    • 2006
  • As PRC linear interpolation algorithm is applied after analysed and verified in this paper, the unknown location of a user can be identified by using PRC information of multi-DGPS reference station. The PRC information of each GPS satellite is not varying rapidly, which makes it possible to assume that PRC information of each GPS satellite varies linearly. So, the PRC regeneration algorithm with linear interpolation can be applied to improve the accuracy of finding a user's location by using the various PRC information obtained from multi-DGPS reference station. The desirable PRC is made by the linear combination with the known position of multi-DGPS reference station and PRC values of a satellite using signals from multi-DGPS reference station. The RTK-GPS result was used as the reference. To test the performance of the linearly interpolated PRC regeneration algorithm, multi-channel DGPS beacon receiver was built to get a user's position more exactly by using PRC data of maritime DGPS reference station in RTCM format. At the end of this paper, the result of the quantitative analysis of the developed navigation algorithm performance is presented.

Reliability Assessment Based on an Improved Response Surface Method (개선된 응답면기법에 의한 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • response surface method (RSM) is widely used to evaluate th e extremely smal probability of ocurence or toanalyze the reliability of very complicated structures. Althoug h Monte-Carlo Simulation (MCS) technique can evaluate any system, the procesing time of MCS dependson the reciprocal num ber of the probability of failure. The stochastic finite element method could solve thislimitation. However, it is limit ed to the specific program, in which the mean and coeficient o f random variables are programed by a perturbation or by a weigh ted integral method. Therefore, it is not aplicable when erequisite programing. In a few number of stage analyses, RSM can construct a regresion model from the response of the c omplicated structural system, thus, saving time and efort significantly. However, the acuracy of RSM depends on the dist ance of the axial points and on the linearity of the limit stat e functions. To improve the convergence in exact solution regardl es of the linearity limit of state functions, an improved adaptive response surface method is developed. The analyzed res ults have ben verified using linear and quadratic forms of response surface functions in two examples. As a result, the be st combination of the improved RSM techniques is determined and programed in a numerical code. The developed linear adapti ve weighted response surface method (LAW-RSM) shows the closest converged reliability indices, compared with quadratic form or non-adaptive or non-weighted RSMs.