• Title/Summary/Keyword: Linear attenuation coefficient

Search Result 79, Processing Time 0.025 seconds

Comparison of nano/micro lead, bismuth and tungsten on the gamma shielding properties of the flexible composites against photon in wide energy range (40 keV-662 keV)

  • Asgari, Mansour;Afarideh, Hossein;Ghafoorifard, Hassan;Amirabadi, Eskandar Asadi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4142-4149
    • /
    • 2021
  • In the radiation protection application, the metal-polymer composites have been developed for their radiation shielding properties. In this research, the elastomer composites doped by 10 ㎛ and 100nm size of lead, bismuth and tungsten particles as filler with 30 and 60 wt percentages were prepared. To survey the shielding properties of the polymer composites using gamma-ray emitted from 152Eu and 137Cs sources, the gamma flux was measured by using NaI(Tl) detector, then the linear attenuation coefficient was calculated. Also, the Monte Carlo simulation (MCs) method was used. The results showed a direct relationship between the linear attenuation coefficients of the absorbent and filler ratio. Also, the decrease in the particle size of the shielding material in each weight percentage improved the radiation shielding features. When the dimension of the particles was in the order of nano-size, more attenuation was achieved. At low energies used for medical diagnostic X-ray applications due to the predominance of the photoelectric effect, bismuth and lead were suitable selection as filler.

Bentonite based ceramic materials from a perspective of gamma-ray shielding: Preparation, characterization and performance evaluation

  • Asal, Sinan;Erenturk, Sema Akyil;Haciyakupoglu, Sevilay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1634-1641
    • /
    • 2021
  • Exposure to gamma-rays is hazardous for humans and other living beings because of their high penetration through the materials. For this reason, shielding materials (usually lead, copper and stainless steel) are used to protect against gamma rays. This study's objective was to prepare ceramic materials for gamma radiation shielding by using different natural bentonite clays. Gamma-ray attenuation performances of the prepared shielding materials at different thicknesses were investigated and evaluated for different gamma-ray energies from different standard point gamma radiation sources (251Am, 57Co, 137Cs, 60Co, and 88Y). The mass and linear attenuation coefficients of the prepared ceramics vary between 0.238 and 0.443 cm2 g-1 and between 0.479 and 1.06 cm-1, respectively, depending on their thicknesses. Results showed that these materials could be prioritized because of their evidential properties of gamma radiation protection in radiation applications.

Determination of Effective Energy of CT X-ray beams (CT X-선 빔들의 유효에너지 결정)

  • Kim, Jong Eon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.517-522
    • /
    • 2019
  • The purpose of this study is to determine the effective energy of CT X-ray beams by using the CT slice images of a CT number calibration insert part in the AAPM CT performance phantom. The CT number calibration insert part in the AAPM CT performance phantom was scanned five times by using a CT canner for 80, 100 and 120 kVp X-ray beams. The average value of CT numbers of each pin were measured for each CT slice image. The correlation coefficients were obtained by linear fit between the average value of CT numbers measured and liner attenuation coefficient under different energy at each pin calculated from data of NIST. A photon energy corresponding to the maximum value of the obtained correlation coefficient was determined as an effective energy. As a result, the effective energy was 56, 62 and 66~67 keV, respectively, for 80, 100 and 120 kVp X-ray beams.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Effects of Wave Attenuation on the Acoustic Emission Amplitude Distribution of Injection-Molded Fiber/Plastic Composites (섬유/플라스틱 사출성형 복합재료의 음향방출 진폭분포에 대한 감쇠효과)

  • Choi, N.S.;Takahashi, Kiyoshi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • The attenuation of acoustic emission (AE) waves was evaluated for injection-molded short-fiber-reinforced thermoplastic composites employing simulated AE waves. Values of attenuation coefficient (${\alpha}$) decreased more with increasing fiber volume fraction ($V_f$) than that expected from a simple linear relation between ${\alpha}$ and $V_f$. The effect of wave attenuation was taken into account in a quantitative analysis of the AE peak amplitude distribution which was obtained from each zone partitioned in a specimen gage portion. The amplitude distribution compensated for the measured attenuation loss was exhibited almost similar in every zone of the specimen. Consequently, it was, shown that the AE amplitudes obtained from fiber/plastic composites were considerably affected by the attenuation.

  • PDF

A unique Vietnam's red clay-based brick reinforced with metallic wastes for γ-ray shielding purposes: Fabrication, characterization, and γ-ray attenuation properties

  • Ta Van Thuong;O.L. Tashlykov;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1544-1551
    • /
    • 2024
  • A unique brick series based on Vietnamese clay was manufactured at 114.22 MPa pressure rate for γ-ray attenuation purposes, consisting of (x) metallic waste & (90%-x) red clay mineral & 10% (hardener mixed with epoxy resin), where (x) is equal to the values 0%, 20%, 40%, 50%, and 70%. The impacts of industrial metal waste ratio in the structure and radiation protective characteristics were evaluated experimentally. The increase in metallic waste doping concentrations from 0% to 70% was associated with an increase in the manufactured brick's density (ρ) from 2.103 to 2.256 g/cm3 while the fabricated samples' porosity (Φ) decreased from 11.7 to 1.0%, respectively. Together with a rise in fabricated brick's density and a decrease in their porosities, the manufactured bricks' γ-ray attenuation capacities improved. The measured linear attenuation coefficient (μ, cm-1) was improved by 30.8%, 22.1%, 21.6%, and 19.7%, at Eγ equal to the values respectively 0.662, 1.173, 1.252, and 1.332 MeV, when the metallic waste concentration increased from 0% to 70%, respectively. The study demonstrates that manufactured bricks exhibit superior radiation shielding properties, with radiation protection efficiencies of 88.4%, 90.0%, 91.7%, 92.1%, and 92.4% for bricks with industrial metal waste contents of 0%, 20%, 40%, 50%, and 70%, respectively, at γ-ray energy (Eγ) of 1.332 MeV.

Investigation of gamma radiation shielding capability of two clay materials

  • Olukotun, S.F.;Gbenu, S.T.;Ibitoye, F.I.;Oladejo, O.F.;Shittu, H.O.;Fasasi, M.K.;Balogun, F.A.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.957-962
    • /
    • 2018
  • The gamma radiation shielding capability (GRSC) of two clay-materials (Ball clay and Kaolin)of Southwestern Nigeria ($7.49^{\circ}N$, $4.55^{\circ}E$) have been investigated by determine theoretically and experimentally the mass attenuation coefficient, ${\mu}/{\rho}(cm^2g^{-1})$ of the clay materials at photon energies of 609.31, 1120.29, 1173.20, 1238.11, 1332.50 and 1764.49 keV emitted from $^{214}Bi$ ore and $^{60}Co$ point source. The mass attenuation coefficients were theoretically evaluated using the elemental compositions of the clay-materials obtained by Particle-Induced X-ray Emission (PIXE) elemental analysis technique as input data for WinXCom software. While gamma ray transmission experiment using Hyper Pure Germanium (HPGe) spectrometer detector to experimentally determine the mass attenuation coefficients, ${\mu}/{\rho}(cm^2g^{-1})$ of the samples. The experimental results are in good agreement with the theoretical calculations of WinXCom software. Linear attenuation coefficient (${\mu}$), half value layer (HVL) and mean free path (MFP) were also evaluated using the obtained ${\mu}/{\rho}$ values for the investigated samples. The GRSC of the selected clay-materials have been compared with other studied shielding materials. The cognizance of various factors such as availability, thermo-chemical stability and water retaining ability by the clay-samples can be analyzed for efficacy of the material for their GRSC.

Gamma Ray Shielding Study of Barium-Bismuth-Borosilicate Glasses as Transparent Shielding Materials using MCNP-4C Code, XCOM Program, and Available Experimental Data

  • Bagheri, Reza;Moghaddam, Alireza Khorrami;Yousefnia, Hassan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.216-223
    • /
    • 2017
  • In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and $10^{th}$ value layer values of barium-bismuth-borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium-bismuth-borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

Convergence Analysis of a Stereophonic Echo Canceling Algorithm Using Input Signals of All Channels

  • Kim, Masanori oto;Toshihiro Furukawa;Shinsaku Mori
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.2004-2007
    • /
    • 2002
  • In the linear combination type stereophonic echo canceller, it is known not to converge the coefficient vector of the adaptive filter to a correct echo path. In this report, we analyze the convergence value of the filter coefficient vector of the stereo echo canceling algorithm using input signals of all channels in relation to this problem. In this analysis, one of the two inputs to the un-known system and adaptive one are assumed to be a delayed and attenuated version of the other signal as a model of the input signal with a strong cross-correlation. As a result, it is shown for the coefficient vectors not to converge to echo paths, and nor to converge to the value which depends on the time delay and the attenuation of the input signal. We show that the computer simulation result are corresponding to our analytical results.

  • PDF

Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses

  • Vani, P.;Vinitha, G.;Sayyed, M.I.;AlShammari, Maha M.;Manikandan, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4106-4113
    • /
    • 2021
  • Rare earth doped barium tellurite glasses were synthesised and explored for their radiation shielding applications. All the samples showed good thermal stability with values varying between 101 ℃ and 135 ℃ based on dopants. Structural properties showed the dominance of matrix elements compared to rare earth dopants in forming the bridging and non-bridging atoms in the network. Bandgap values varied between 3.30 and 4.05 eV which was found to be monotonic with respective rare earth dopants indicating their modification effect in the network. Various radiation shielding parameters like linear attenuation coefficient, mean free path and half value layer were calculated and each showed the effect of doping. For all samples, LAC values decreased with increase in energy and is attributed to photoelectric mechanism. Thulium doped glasses showed the highest value of 1.18 cm-1 at 0.245 MeV for 2 mol.% doping, which decreased in the order of erbium, holmium and the base barium tellurite glass, while half value layer and mean free paths showed an opposite trend with least value for 2 mol.% thulium indicating that thulium doped samples are better attenuators compared to undoped and other rare earth doped samples. Studies indicate an increased level of thulium doping in barium tellurite glasses can lead to efficient shielding materials for high energy radiation.