• Title/Summary/Keyword: Linear approach

Search Result 2,795, Processing Time 0.027 seconds

Monitoring and Scheduling Methods for MIMO-FIFO Systems Utilizing Max-Plus Linear Representation

  • Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.23-33
    • /
    • 2008
  • This paper proposes an approach to monitoring and scheduling methods for repetitive MIMO-FIFO DESs. We use max-plus algebra for modeling and formulation, known as an effective approach for controller design for this type of system. Because a certain type of linear equations in max-plus algebra can represent the system's behavior, the principal concerns in past researches were how to solve the equations. However, the researches focused mainly on analyses of the relation between inputs and outputs of the system, which implies that the changes or the slacks of internal states were not clarified well. We first examine several properties of the corresponding state variables, which contribute to finding and tracing the float times in each process. Moreover, we provide a rescheduling method that can take into account delays or changes of the internal states. These methods would be useful in schedule control or progress management.

A Fuzzy Allocation Model and Its Application to Attacker Assignment Problem (FUZZY 할당모형 및 공격항공기의 표적 할당 문제에 대한 응용)

  • Yun Seok-Jun;Go Sun-Ju
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.1
    • /
    • pp.47-60
    • /
    • 1992
  • A class of allocation problems can be modeled in a linear programming formulation. But in reality, the coefficient of both the cost and constraint equations can not be generally determined by crisp numbers due to the imprecision or fuzziness in the related parameters. To account for this. a fuzzy version is considered and solved by transforming to a conventional non-linear programming model. This gives a solution as well as the degree that the solution satisfies the objective and constraints simultaneously and hence will be very useful to a decision maker. An attacker assignment problem for multiple fired targets has been modeled by a linear programming formulation by Lemus and David. in which the objective is to minimize the cost that might occur on attacker's losses during the mission. A fuzzy version of the model is formulated and solved by transforming it to a conventional nonlinear programming formulation following the Tanaka's approach. It is also expected that the fuzzy approach will have wide applicability in general allocation problems

  • PDF

Stochastic along-wind response of nonlinear structures to quadratic wind pressure

  • Floris, Claudio;de Iseppi, Luca
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.423-440
    • /
    • 2002
  • The effects of the nonlinear (quadratic) term in wind pressure have been analyzed in many papers with reference to linear structural models. The present paper addresses the problem of the response of nonlinear structures to stochastic nonlinear wind pressure. Adopting a single-degree-of-freedom structural model with polynomial nonlinearity, the solution is obtained by means of the moment equation approach in the context of It$\hat{o}$'s stochastic differential calculus. To do so, wind turbulence is idealized as the output of a linear filter excited by a Gaussian white noise. Response statistical moments are computed for both the equivalent linear system and the actual nonlinear one. In the second case, since the moment equations form an infinite hierarchy, a suitable iterative procedure is used to close it. The numerical analyses regard a Duffing oscillator, and the results compare well with Monte Carlo simulation.

An Efficient Fingerprint Matching by Multiple Reference Points

  • Khongkraphan, Kittiya
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.22-33
    • /
    • 2019
  • This paper introduces an efficient fingerprint matching method based on multiple reference minutiae points. First, we attempt to effectively align two fingerprints by employing multiple reference minutiae points. However, the corresponding minutiae points between two fingerprints are ambiguous since a minutia of one fingerprint can be a match to any minutia of the other fingerprint. Therefore, we introduce a novel method based on linear classification concept to establish minutiae correspondences between two fingerprints. Each minutiae correspondence represents a possible alignment. For each possible alignment, a matching score is computed using minutiae and ridge orientation features and the maximum score is then selected to represent the similarity of the two fingerprints. The proposed method is evaluated using fingerprint databases, FVC2002 and FVC2004. In addition, we compare our approach with two existing methods and find that our approach outperforms them in term of matching accuracy, especially in the case of non-linear distorted fingerprints. Furthermore, the experiments show that our method provides additional advantages in low quality fingerprint images such as inaccurate position, missing minutiae, and spurious extracted minutiae.

Intelligent Digital Redesign of Uncertain Nonlinear Systems : Global approach (불확실성이 포함된 비선형 시스템에 대한 전역적 접근의 지능형 디지털 재설계)

  • Sung Hwachang;Joo Younghoon;Park Jinbae;kim Dowan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.95-98
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete -time system have proper reason. Sufficiently conditions for the global state -matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMls). Finally, we prove the effectiveness and stabilization of the proposed intelligent digital redesign method by applying the chaotic Lorentz system.

  • PDF

Support Vector Machine for Interval Regression

  • Hong Dug Hun;Hwang Changha
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.67-72
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

An Approach for Modeling of Sound Absorbing Material using Debye Polarization (Debye Polarization을 이용한 흡음재 모델링에 대한 연구)

  • Park, Kyu-Chil;Ito, Kazufumi;Yoon, Jong-Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1391-1396
    • /
    • 2012
  • It is introduced an approach to model for numerical analysis of a sound absorbing material that has different absorbing coefficient according to frequency. For modeling of a sound absorbing material, we tried to model by a traditional modeling method. But it had large differences on frequency domain, especially a capacitance component due to increasing of frequency. We approach to model a sound absorbing material by the Debye polarization technique with non-linear least square method. At first, we estimated parameters form a polyurethane with thickness 25 mm, then we could model a polyurethane with thickness 50 mm using same parameters. Therefor, we could find that the Debye polarization is an useful way to model sound absorbing materials.

Earth Mover's Distance Approximate Earth Mover's Distance for the Efficient Content-based Image Retreival (효율적인 내용 기반 이미지 검색을 위한 근사 Earth Mover's Distance)

  • Jang, Min-Hee;Kim, Sang-Wook
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.323-328
    • /
    • 2011
  • For content-based image retrieval, the earth mover's distance and the optimal color composition distance are proposed to measure the dissimilarity. Although providing good retrieval results, both methods are too time-consuming to be used in a large image database. To solve the problem, we propose a new distance function that calculates an approximate earth mover's distance in linear time. To calculate the dissimilarity in linear time, the proposed approach employs the space-filling curve. We have performed extensive experiments to show the effectiveness and efficiency of the proposed approach. The results reveal that our approach achieves almost the same results with the EMD in linear time.

Daily Unit Commitment Scheduling of Power System with Energy Storage System (전력저장장치를 고려한 일간 최적 기동정지계획 수립연구)

  • Song, Ha-Na;Jang, Se-Hwan;Kim, Hyeong-Jung;Roh, Jae-Hyung;Park, Jong-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.717-725
    • /
    • 2011
  • In the power system with an electric storage system that can increase utilization rate of the source of such new renewable energy, this paper introduces the approach on the daily unit commitment scheduling that determines simultaneously optimum operational condition and output of thermal generators and electric storage device. The unit commitment is one of the most important issues in economic operation and security of short-term operational plan of the power system. It is to determine on/off status of generator to minimize operational cost during the given period. The committed generator should satisfy various operational limitation such as estimated demand by system, spinning reserve condition within minimum operational cost. In order to determine on/off or charge/discharge/idle condition and output level of units and electric storage system, the MILP(Mixed Integer Linear Programming) is suggested. The proposed approach is the mixed method between LP(Linear Programming) and IP(integer programming) which seeks the value of real number and integer that maximize or minimize function objective within given condition. The daily unit commitment problem with the electric storage system is applied to MILP algorithm through linearization and formulation process. The proposed approach is applied to the test system.

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF