• Title/Summary/Keyword: Linear Theory Method

Search Result 1,001, Processing Time 0.029 seconds

Nonlinear stability analysis of porous sandwich beam with nanocomposite face sheet on nonlinear viscoelastic foundation by using Homotopy perturbation method

  • Rostamia, Rasoul;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.821-829
    • /
    • 2021
  • Nonlinear dynamic response of a sandwich beam considering porous core and nano-composite face sheet on nonlinear viscoelastic foundation with temperature-variable material properties is investigated in this research. The Hamilton's principle and beam theory are used to drive the equations of motion. The nonlinear differential equations of sandwich beam respect to time are obtained to solve nonlinear differential equations by Homotopy perturbation method (HPM). The effects of various parameters such as linear and nonlinear damping coefficient, linear and nonlinear spring constant, shear constant of Pasternak type for elastic foundation, temperature variation, volume fraction of carbon nanotube, porosity distribution and porosity coefficient on nonlinear dynamic response of sandwich beam are presented. The results of this paper could be used to analysis of dynamic modeling for a flexible structure in many industries such as automobiles, Shipbuilding, aircrafts and spacecraft with solar easured at current time step and the velocity and displacement were estimated through linear integration.

A Numerical Study on One-Dimensional Consolidation of Soft Clay with Finite Strain Consolidation Theory (유한변형율(有限變形率) 압밀이론(壓密理論)에 의한 연약(軟弱) 점토(粘土)의 -차원(次元) 압밀(壓密)에 관한 수치(數値) 해석적(解析的) 연구)

  • Yoo, Nam-Jae;Jung, Yoon-Hwa;Lee, Myung-Woog
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.85-98
    • /
    • 1991
  • A numerical study was performed to investigate characteristics of one-dimensional consolidation of soft clay. Results of consolidation tests with the remolded normally consolidation clay of having a very high initial void ratio were analyzed by using the numerical technique of finite difference method based on the finite strain consolidation theory, to evaluate consolidational characteristics of soft clay under surcharges on the top of clay. On the other hand, a numerical parametric study on soft clay consolidated due to its self-weight was also carried out to find its effect on one-dimensional consolidation. Terzaghi's conventional consolidation theory, finite strain consolidation theories with linear and non-linear interpolation of effective stress - void ratio - permeability relation were used to analyze the test results and their results were compared to each other to figure out the difference between them. Therefore, the validity of theories was assessed.

  • PDF

Conventional problem solving on the linear and nonlinear buckling of truncated conical functionally graded imperfect micro-tubes

  • Linyun, Zhou
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.545-559
    • /
    • 2022
  • This paper studies the buckling response of nonuniform functionally graded micro-sized tubes according to the high-order tube theory (HOTT) and classical beam theory (CBT) in addition to nonlocal strain gradient theory. The microtube is made of axially functionally graded material (AFGM). Both inner and outer tube radiuses are changed along the tube length; the microtube is the truncated conical type of tube. The nonlinear partial differential (PD) the formulations are obtained on the basis of the energy conservation method. Then, the linear and nonlinear results are computed via a powerful numerical approach. Finally, the impact of various parameters on the stability of axially functionally graded (AFG) microtube regarding the buckling analysis is discussed.

Mode I Field Intensity Factors of Infinitely Long Strip in Piezoelectric Media

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.845-850
    • /
    • 2000
  • We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing a Griffith crack under in-plane normal loading within the framework of linear piezoelectricity. The potential theory method and Fourier transforms are used to reduce the problem to the solution of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the field intensity factors are obtained, and the influences of the electric fields for PZT-6B piezoelectric ceramic are discussed.

  • PDF

WEAK SOLUTIONS FOR THE HAMILTONIAN BIFURCATION PROBLEM

  • Choi, Q-Heung;Jung, Tacksun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.667-680
    • /
    • 2016
  • We get a theorem which shows the multiple weak solutions for the bifurcation problem of the superquadratic nonlinear Hamiltonian system. We obtain this result by using the variational method, the critical point theory in terms of the $S^1$-invariant functions and the $S^1$-invariant linear subspaces.

AN EFFICIENT ALGORITHM FOR FINDING OPTIMAL CAR-DRIVING STRATEGY

  • Farhadinia, Bahram
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.1-14
    • /
    • 2012
  • In this paper, the problem of determining the optimal car-deriving strategy has been examined. In order to find the optimal driving strategy, we have modified a method based on measure theory. Further, we demonstrate that the modified method is an efficient and practical algorithm for dealing with optimal control problems in a canonical formulation.

The effect of sweep angle on the limit cycle oscillations of aircraft wings

  • Eken, Seher;Kaya, Metin Orhan
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.199-215
    • /
    • 2015
  • This study focuses on the limit cycle oscillations (LCOs) of cantilever swept-back wings containing a cubic nonlinearity in an incompressible flow. The governing aeroelastic equations of two degrees-of-freedom swept wings are derived through applying the strip theory and unsteady aerodynamics. In order to apply strip theory, mode shapes of the cantilever beam are used. The harmonic balance method is used to calculate the frequencies of LCOs. Linear flutter analysis is conducted for several values of sweep angles to obtain the flutter boundaries.

A NEW METHOD FOR SOLVING THE NONLINEAR SECOND-ORDER BOUNDARY VALUE DIFFERENTIAL EQUATIONS

  • Effati, S.;Kamyad, A.V.;Farahi, M.H.
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.183-193
    • /
    • 2000
  • In this paper we use measure theory to solve a wide range of second-order boundary value ordinary differential equations. First, we transform the problem to a first order system of ordinary differential equations(ODE's)and then define an optimization problem related to it. The new problem in modified into one consisting of the minimization of a linear functional over a set of Radon measures; the optimal measure is then approximated by a finite combination of atomic measures and the problem converted approximatly to a finite-dimensional linear programming problem. The solution to this problem is used to construct the approximate solution of the original problem. Finally we get the error functional E(we define in this paper) for the approximate solution of the ODE's problem.

Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory

  • Bagdatli, Suleyman M.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.281-298
    • /
    • 2015
  • In this study, nonlinear transverse vibrations of tensioned Euler-Bernoulli nanobeams are studied. The nonlinear equations of motion including stretching of the neutral axis and axial tension are derived using nonlocal beam theory. Forcing and damping effects are included in the equations. Equation of motion is made dimensionless via dimensionless parameters. A perturbation technique, the multiple scale methods is employed for solving the nonlinear problem. Approximate solutions are applied for the equations of motion. Natural frequencies of the nanobeams for the linear problem are found from the first equation of the perturbation series. From nonlinear term of the perturbation series appear as corrections to the linear problem. The effects of the various axial tension parameters and different nonlocal parameters as well as effects of different boundary conditions on the vibrations are determined. Nonlinear frequencies are estimated; amplitude-phase modulation figures are presented for simple-simple and clamped-clamped cases.

Optimum Draft and Phasing of Double-Flap Wavemaker (Double-Flap 조파기의 설계 및 조파판의 최적 위상관계)

  • Shin-Hyoung,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 1979
  • A method to determine the optimum drafts of waveboards of single and double-flap wavemaker is presented by using a linearized first-order wave theory and a linear regression method. A linear regression is verified to be quite simpler than the local disturbance consideration or regular-wave forming distance. It is pointed out that lower hinge should be deep enough to keep the upper flap vertical for a long wave length.

  • PDF