• Title/Summary/Keyword: Linear Slope Method

Search Result 232, Processing Time 0.026 seconds

Linear Regression Analysis to Evaluate the Particulate Matter Removal Rate of Functional Construction Materials (건설자재 미세먼지 제거율 평가를 위한 선형 회귀 분석법 제안)

  • Park, Kwang-Min;Min, Kyung-Sung;Jung, Sang-Hwa;Roh, Yonug-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.86-93
    • /
    • 2021
  • In order to remove particulate matter, functional construction materials are developed. However, there is no evaluation method and infrastructure for particulate matter removal rate. Therefore, the purpose of this study was to build a particulate matter removal rate test chamber and to present a method for particulate matter removal rate. As a result, since construction materials have effectiveness in an environment where particulate matter is generated, the particulate matter injection step was proposed as a comparison target. The evaluation of the particulate removal rate was proposed by relative comparison of the slope values obtained by linear regression analysis for all concentration values measured in the particulate matter injection step. In linear regression method, all measured values can be evaluated, and the variability can be evaluated with the coefficient of determination (R-square), so that the reliability of the particulate matter removal rate can be secured.

Modeling Soil Temperature of Sloped Surfaces by Using a GIS Technology

  • Yun, Jin I.;Taylor, S. Elwynn
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.113-119
    • /
    • 1998
  • Spatial patterns of soil temperature on sloping lands are related to the amount of solar irradiance at the surface. Since soil temperature is a critical determinant of many biological processes occurring in the soil, an accurate prediction of soil temperature distribution could be beneficial to agricultural and environmental management. However, at least two problems are identified in soil temperature prediction over natural sloped surfaces. One is the complexity of converting solar irradiances to corresponding soil temperatures, and the other, if the first problem could be solved, is the difficulty in handling large volumes of geo-spatial data. Recent developments in geographic information systems (GIS) provide the opportunity and tools to spatially organize and effectively manage data for modeling. In this paper, a simple model for conversion of solar irradiance to soil temperature is developed within a GIS environment. The irradiance-temperature conversion model is based on a geophysical variable consisting of daily short- and long-wave radiation components calculated for any slope. The short-wave component is scaled to accommodate a simplified surface energy balance expression. Linear regression equations are derived for 10 and 50 cm soil temperatures by using this variable as a single determinant and based on a long term observation data set from a horizontal location. Extendability of these equations to sloped surfaces is tested by comparing the calculated data with the monthly mean soil temperature data observed in Iowa and at 12 locations near the Tennessee - Kentucky border with various slope and aspect factors. Calculated soil temperature variations agreed well with the observed data. Finally, this method is applied to a simulation study of daily mean soil temperatures over sloped corn fields on a 30 m by 30 m resolution. The outputs reveal potential effects of topography including shading by neighboring terrain as well as the slope and aspect of the land itself on the soil temperature.

  • PDF

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

Failure Time Prediction by Nonlinear Least Square Method with Deformation Data (계측 자료의 비선형최소자승법을 이용한 파괴시간 예측)

  • Yoon, Yong-Kyun;Kim, Byoung-Chul;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.558-566
    • /
    • 2009
  • Time-dependent behavior is a basic mechanical property of rocks. Predicting the failure time of rock structures by analyzing the time-dependent characteristic is important and problematic. It is tried to predict the failure time of tunnel, slope & laboratory creep test specimen from measured displacement(or strain) and rate with relationship suggested by Voight($\ddot{\Omega}=A\dot{\Omega}^\alpha$, where $\Omega$ is a measurable quantity such as strain & displacement and A & $\alpha$ are constants). A & $\alpha$ are estimated through applying the nonlinear least square method to the single and double integrated Voight's equations and utilized to predict the failure time. Predicted failure time is in accordance with real one except minor error. Linear inverse rate method applied to creep strain and rate yields a poor linear correlation of data and precision of predicted failure time is not better than methods using strain and rate.

Development of Runoff Hydrograph Model for the Derivation of Optimal Design Flood of Agricultural Hydraulic Structures(1) (농업수리구조물의 적정설계홍수량 유도를 위한 유출수문곡선모형의 개발(I))

  • 이순혁;박명근;맹승진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.34-47
    • /
    • 1995
  • It is experienced fact as a regular annual event that the structure to he designed on unreasonable flood for the agricultural structures including reservoirs have been brought not only loss of lives, but also enormous property damage. For the solution of this problem at issue, this study was conducted to develop an optimal runoff hydrograph model by comparison of the peak flows and time to peak between observed and simulated flows derived by linear time-invariant and linear time-variant models under the condition of having a short duration of heavy rainfall with uniform rainfall intensity at nine small watersheds which are within the range of 55.9 to 140.7 square kilometers in area in Han, Geum, Nagdong and Yeongsan Rivers. The results obtained through this study can be summarized as follows. 1. Storage constants and Gamma function arguments were calculated within the range of 1.2 to 6.42 and of 1.28 to 8.05 respectively by the moment method as the parameters for the analysis of runoff hydrograph based on linear time-invariant model. 2. Parameters for both linear time-invariant and linear time-variant models were calibrated with nine gaged watershed data, using a trial and error method. The resulting parameters including Gamma function argument, N and storage constant, K for linear time-invariant model were related statistically to watershed characteristic variables such as area, slope, length of main stream and the centroid length of the basin. 3. Average relative errors of the simulated peak discharge of calibrated runoff hydrographs by using linear time-variant and linear time-invariant models were shown to be 0.75 and 5.42 percent respectively to the peak of observed runoff hydrographs. Correlation coefficients for the statistical analysis in the same condition were shown to be 0.999 and 0.978 with a high significance respectively. Therefore, it can be concluded that the accuracy of a linear time-variant model is approaching more closely to the observed runoff hydrograph than that of a linear time-invariant model in the applied watersheds. 4. Average relative errors of the time to peak of calibrated runoff hydrographs by using linear time-variant and linear time-invariant models were shown to be 16.44 and 19.89 percent respectively to the time to peak of observed runoff hydrographs. Correlation coefficients in the same condition were also shown to be 0.999 and 0.886 with a high significance respectively. 5. It can be seen that the shape of simulated hydrograph based on a linear time- variant model is getting closer to the observed runoff hydrograph than that of a linear time-invariant model in the applied watersheds. 6. Two different models were verified with different rainfall-runoff events from data for the calibration by relative error and correlation analysis. Consequently, it can be generally concluded that verification results for the peak discharge and time to peak of simulated runoff hydrographs were in good agreement with those of calibrated runoff hydrographs.

  • PDF

Development of New Method for Antioxidant Capacity with ORP-pH System

  • Lee Se Yeong;Kim Eun Ok;Seo Hyo Jin;Kim Min Yong;Kim Jong Deog
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.6
    • /
    • pp.514-518
    • /
    • 2004
  • Many methods are used in the measurement of antioxidative capacity. These meth­ods require very complex procedures and pretreatment. Our suggestions for research will be simple and accurate methods for obtaining many kinds of samples, especially colored samples such as natural product extracts for measuring antioxidative capacities. For oxidation-reduction potential (ORP) system value, we examined the relationships between the ORP-pH system and the ORAC, FRAP methods. To evaluate ORP System value, we calculated the absolute slope/intercept from the linear regression of each standard material at different concentrations and ORP-pH system, and compared the correlations with ORAC and FRAP values.

Boundary Element Analysis on the Hydraulic Characteristics of Submerged Breakwater with Trapezoidal Type (사다리꼴형상 잠제의 수리특성에 관한 경계요소해석)

  • Kim Nam-Hyeong;Yang Soon-Bo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.45-51
    • /
    • 2003
  • The reflection and transmission of submerged breakwater with trapezoidal type are computed numerically using boundary element method. The analysis method is based on the wave pressure function with the contlnuit? in the analytical region including fluid and porous structures. Wane motion within the porous structures is simulated by introducing the linear dissipation coefficient and added mass coefficient. The results indicate that transmission and reflection coefficient are determined due to the change of slope of submerged breakwater with trapezoidal type.

  • PDF

Application of the Boundary Element Method to Finite Deflection of Elastic Bending Plates

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2003
  • The present study deals with an approximate integral equation approach to finite deflection of elastic plates with arbitrary plane form. An integral formulation leads to a system of boundary integral equations involving values of deflection, slope, bending moment and transverse shear force along the edge. The basic principles of the development of boundary element technique are reviewed. A computer program for solving for stresses and deflections in a isotropic, homogeneous, linear and elastic bending plate is developed. The fundamental solution of deflection and moment is employed in this program. The deflections and moments are assumed constant within the quadrilateral element. Numerical solutions for sample problems, obtained by the direct boundary element method, are presented and results are compared with known solutions.

Treatment of Nitrogen Oxides in Ambient Air using a Ion-Selective Electrode (대기중 질산화물의 이온 선택성 전극에 의한 처리)

  • 안형환;우인성;강안수;이영순;김윤선
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.40-49
    • /
    • 1990
  • For the determination of polluant NOx in ambient air, nitrate ion-selective electrode(ISE) was made. To comparison of NOx in each method, the nitrate-ISE, NEBA, Orion electrode were used to determinee NOx in ambient air. In this work, the concentration of NOx in ambient air was average 0.06ppm. The results were good agreement with those obtained by each method within a relative error of 3%, Absorbing efficiency of nitrogen oxides in ambient air was good for Alkali solution. The determination of nitrogen oxides in ambient air using the Aliquat 336N-PVC membrane electrode was one of the useful method. The best characteristics of the Aliquat 336N-PVC me,mbrane electrode were obtained with the ion-exchanger concentration level of 6.5-9.1 percent by weight. The optimal membrane composition, was 9.09wt.% of ion-exchanger, 30.95wt.% of PVC, 60.6wt.% of plasticizer (DBP), and 0.5mm of thickness. Under the above condition, the electrode approached the Nernstian slope most closely, and the linear response ranges produced the best results.

  • PDF

Adaptive Exponential Smoothing Method Based on Structural Change Statistics (구조변화 통계량을 이용한 적응적 지수평활법)

  • Kim, Jeong-Il;Park, Dae-Geun;Jeon, Deok-Bin;Cha, Gyeong-Cheon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.165-168
    • /
    • 2006
  • Exponential smoothing methods do not adapt well to unexpected changes in underlying process. Over the past few decades a number of adaptive smoothing models have been proposed which allow for the continuous adjustment of the smoothing constant value in order to provide a much earlier detection of unexpected changes. However, most of previous studies presented ad hoc procedure of adaptive forecasting without any theoretical background. In this paper, we propose a detection-adaptation procedure applied to simple and Holt's linear method. We derive level and slope change detection statistics based on Bayesian statistical theory and present distribution of the statistics by simulation method. The proposed procedure is compared with previous adaptive forecasting models using simulated data and economic time series data.

  • PDF