• Title/Summary/Keyword: Linear Slope Method

Search Result 234, Processing Time 0.026 seconds

Saw-tooth softening/stiffening - a stable computational procedure for RC structures

  • Rots, Jan G.;Invernizzi, Stefano;Belletti, Beatrice
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.213-233
    • /
    • 2006
  • Over the past years techniques for non-linear analysis have been enhanced significantly via improved solution procedures, extended finite element techniques and increased robustness of constitutive models. Nevertheless, problems remain, especially for real world structures of softening materials like concrete. The softening gives negative stiffness and risk of bifurcations due to multiple cracks that compete to survive. Incremental-iterative techniques have difficulties in selecting and handling the local peaks and snap-backs. In this contribution, an alternative method is proposed. The softening diagram of negative slope is replaced by a saw-tooth diagram of positive slopes. The incremental-iterative Newton method is replaced by a series of linear analyses using a special scaling technique with subsequent stiffness/strength reduction per critical element. It is shown that this event-by-event strategy is robust and reliable. First, the model is shown to be objective with respect to mesh refinement. Next, the example of a large-scale dog-bone specimen in direct tension is analyzed using an isotropic version of the saw-tooth model. The model is capable of automatically providing the snap-back response. Subsequently, the saw-tooth model is extended to include anisotropy for fixed crack directions to accommodate both tensile cracking and compression strut action for reinforced concrete. Three different reinforced concrete structures are analyzed, a tension-pull specimen, a slender beam and a slab. In all cases, the model naturally provides the local peaks and snap-backs associated with the subsequent development of primary cracks starting from the rebar. The secant saw-tooth stiffness is always positive and the analysis always 'converges'. Bifurcations are prevented due to the scaling technique.

Adaptive Intra Prediction Method using Modified Cubic-function and DCT-IF (변형된 3차 함수와 DCT-IF를 이용한 적응적 화면내 예측 방법)

  • Lee, Han-Sik;Lee, Ju-Ock;Moon, Joo-Hee
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.756-764
    • /
    • 2012
  • In current HEVC, prediction pixels are finally calculated by linear-function interpolation on two reference pixels. It is hard to expect good performance on the case of occurring large difference between two reference pixels. This paper decides more accurate prediction pixel values than current HEVC using linear function. While existing prediction process only uses two reference pixels, proposed method uses DCT-IF. DCT-IF analyses frequency characteristics of more than two reference pixels in frequency domain. And proposed method calculates prediction value adaptively by using linear-function, DCT-IF and cubic-function to decide more accurate interpolation value than to only use linear function. Cubic-function has a steep slope than linear-function. So, using cubic-function is utilized on edge in prediction unit. The complexity of encoder and decoder in HM6.0 has increased 3% and 1%, respectively. BD-rate has decreased 0.4% in luma signal Y, 0.3% in chroma signal U and 0.3% in chroma signal V in average. Through this experiment, proposed adaptive intra prediction method using DCT-IF and cubic-function shows increased performance than HM6.0.

Gas-Sensing Membrane Electrodes for the Determination of Dissolved Gases (I). Continuous-Automated Determination of Nitrite Ion Using Tubular PVC Membrane Type of pH Electrode (용해기체 분석용 기체 감응막 이온선택성 전극 (제 1 보). 관형 PVC 막 pH 전극을 이용한 아질산이온의 연속·자동화 정량)

  • Heung Lark Lee;Jong Hoon Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.388-398
    • /
    • 1989
  • A continuous-automated method for the determination of nitrite ion using gas-sensing membrane electrode was developed. The pH electrode of tubular PVC membrane type was used as a detector of this system. The slope of linear response of the electrode measured at optimum conditions for the continuous-automated determination of nitrite ion was 63.5 mV/decade. The concentration range of linear response and detection limit were 2.5 ${\times}10^{-4}{\sim}\;7.5{\times}10^{-2}$M and $8.0{\times}10^{-5}$M, respectively. This detection system was not only less interfering to acidic gas species than other methods but also less time consumable for determination.

  • PDF

Wave Damping Rate Over Multi-layer Permeable Bed of Finite Depth (깊이가 유한한 다중 투수층 위에서의 파의 감쇠율)

  • Suh, Kyung-Duck;Do, Ki-Deok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.127-135
    • /
    • 2009
  • Reid and Kajiura(1957) has studied on the wave damping rate over a permeable bed of infinite depth. In this study, wave damping rate over a permeable bed of finite depth is derived by linear wave theory. It is then extended to derive wave damping rates over a double or triple layer, each of which consist of different material. Applying the wave damping rate to the mild slope equation, the wave transmission coefficient over a permeable bed has been calculated. The model has been certificated by comparing with the result of Flaten and Rygg(1991)'s integral equation method in the case of a single-layer bed.

Nonlinear Chemical Plant Modeling using Support Vector Machines: pH Neutralization Process is Targeted (SVM을 이용한 비선형 화학공정 모델링: pH 중화공정에의 적용 예)

  • Kim, Dong-Won;Yoo, Ah-Rim;Yang, Dae-Ryook;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1178-1183
    • /
    • 2006
  • This paper is concerned with the modeling and identification of pH neutralization process as nonlinear chemical system. The pH control has been applied to various chemical processes such as wastewater treatment, chemical, and biochemical industries. But the control of the pH is very difficult due to its highly nonlinear nature which is the titration curve with the steepest slope at the neutralization point. We apply SVM which have become an increasingly popular tool for machine teaming tasks such as classification, regression or detection to model pH process which has strong nonlinearities. Linear and radial basis function kernels are employed and each result has been compared. So SVH based on kernel method have been found to work well. Simulations have shown that the SVM based on the kernel substitution including linear and radial basis function kernel provides a promising alternative to model strong nonlinearities of the pH neutralization but also to control the system.

Study on development of data base system and pattern analysis of tunnel portal slope in Korea (국내 터널 갱구사면 데이터베이스관리 시스템 개발 및 상태평가 기법에 관한 연구)

  • Baek, Yong;Kwon, O-Il;Koo, Ho-Bon;Bae, Gyu-Jin;Lee, Seoung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.213-225
    • /
    • 2004
  • The number of tunnels are in fact increasing as a part of linear improvement project of general national highway and road enlargement and pavement project. Recently, collapses of portal slope are also occurring considerably, due to local raining from severe rain storm and abnormal weather. Accordingly, it was risen a necessity to efficiently respond to tunnel portal slope damage and maintenance in Korea and oversea nations. This paper is a basic proposal to execute a survey on the current status and state of the tunnel portal slopes that were already installed and are now being operated along general national highways, and also to execute state evaluation for the purpose of managing those effectively. As a research method, domestic tunnels were analyzed in accordance with geometrical shape such as access type, portal form, and tunnel type, etc. via field survey to analyze the types of tunnel portal slopes along national highways. State evaluation classification sheet is presented to divide classes for the danger state of the surveyed portal slopes, and then the related grades are divided. It is mainly aimed at classifying the tunnel portal slope along national highways with using this state evaluation, to use it as basic data so that continuous maintenance can be executed in the future in accordance with danger classes.

  • PDF

Soil Depth Estimation and Prediction Model Correction for Mountain Slopes Using a Seismic Survey (탄성파 탐사를 활용한 산지사면 토심 추정 및 예측모델 보정)

  • Taeho Bong;Sangjun Im;Jung Il Seo;Dongyeob Kim;Joon Heo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.340-351
    • /
    • 2023
  • Landslides are major natural geological hazards that cause enormous property damage and human casualties annually. The vulnerability of mountainous areas to landslides is further exacerbated by the impacts of climate change. Soil depth is a crucial parameter in landslide and debris flow analysis, and plays an important role in the evaluation of watershed hydrological processes that affect slope stability. An accurate method of estimating soil depth is to directly investigate the soil strata in the field. However, this requires significant amounts of time and money; thus, numerous models for predicting soil depth have been proposed. However, they still have limitations in terms of practicality and accuracy. In this study, 71 seismic survey results were collected from domestic mountainous areas to estimate soil depth on hill slopes. Soil depth was estimated on the basis of a shear wave velocity of 700 m/s, and a database was established for slope angle, elevation, and soil depth. Consequently, the statistical characteristics of soil depth were analyzed, and the correlations between slope angle and soil depth, and between elevation and soil depth were investigated. Moreover, various soil depth prediction models based on slope angle were investigated, and corrected linear and exponential soil depth prediction models were proposed.

Elasto-Plastic Behavior of Shear-Deformed Steel Braced Frame Using Finite Difference Method (유한차분법을 이용한 전단변형형 강가새 구조물의 탄소성 거동에 관한 연구)

  • 박일민
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.4
    • /
    • pp.445-454
    • /
    • 2001
  • This paper is to study elasto-plastic behavior of shear deformed braced frames. Two types of frames are considered , X-type and K-type. The slenderness ratio has been used in the parametric study. The stress-strain curve is assumed tri-linear model, and considered the strain hardening range. The finite difference method is used to solve the load-displacement relationship of the braced frames. For the elastic slope and maximum load, experimental results are compared with theoretical results and its difference remains less than 10%. Therefore suggested method in this paper is reasonable.

  • PDF

A new Fabrication Method for Long Fiber Bragg Grating and the Characteristics of the Fiber Grating (긴 광섬유격자의 새로운 제작방법 및 특성분석)

  • Lee, Jong-Hun;Lee, Kyung-Shik
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.12
    • /
    • pp.70-77
    • /
    • 1999
  • A new method for fabricating long fiber Bragg gratings(FBGs) using uniform phase mask is proposed. The proposed method is characterized by forming a number of subgratings sequentially in series and varying linearly the effective refractive index of each subgrating. The reflectivity of a 200mm long uniform FBG developed fabricated by the method is about 95%. Also, the bandwidth and dispersion slope of a 250mm long linear-chirped FBG developed here are ∼0.5nm and ∼4.965ps/nm respectively.

  • PDF

Measurement of Viable Cell Number in Mixed Culture Based on Microbial Respiration Rate (미생물 호흡속도에 기초한 혼합배양중의 생균수 측정)

  • Veljkoic, V.B;;C.R.Engler
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.687-692
    • /
    • 1992
  • A simple method to determine viable cell numbers of each species in mixed culture was developed. The oxygen uptake rate (OUR) equals to the product of the specific OUR and the size of the microbial population. In a mixed culture, the OUR is a result of the respiration activities of each sub-population. The OUR was determined from the slope of the linear relationship between time and the decrease of dissolved oxygen concentration when aeration was stopped. The specific OUR was calculated from the slope of the viable cell number versus OUR curve. These values for C. lusitaniae at 20 and $30^{\circ}C$ were $1.36{\times}10^{-9}$ and $3.90{\times}10^{-9}$ and those for P tannoPhilus at 20 and $30^{\circ}C$ were $0.59{\times}10^{-9}$ and $1.86{\times}10^{-9}$ [(%/s)/(cells/ml)J. respectively. Using these values, viable cell numbers were calculated after the OURs of mixed culture at two temperatures were measured. A good agreement between the viable cell numbers determined by this method and by plate count was obtained.

  • PDF