• Title/Summary/Keyword: Linear Slope Method

Search Result 234, Processing Time 0.027 seconds

Blockage Correction Method for Separated Flows over an Aircraft in a Closed Test-Section Wind Tunnel (폐쇄형 풍동 시험부내의 항공기 실속 흐름에 대한 Blockage 보정 기법 연구)

  • Kang, Seung-Hee;Kwon, Oh-Joon;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.42-49
    • /
    • 2005
  • A new blockage correction method has been developed for the wall interference correction of closed test-section subsonic wind tunnels based on the nonlinear relationship between separation blockage and separation drag. This method can be applied continuously from the linear lift-slope region to the highly nonlinear post-stall region by on-line processing. The present method was validated by comparing the results with a classical method based on the test results of a bluff body and a measured-boundary-condition method. It was shown that the present method is in good agreement with the measured-boundary-condition method, enabling better wall corrections than the bluff body method in both near-stall and post-stall regions.

CALIBRATION OF VECTOR MAGNETOGRAMS BY SOLAR FLARE TELESCOPE OF BOAO

  • MOON YONG-JAE;PARK YOUNG DEUK;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 1999
  • In this study we present a new improved nonlinear calibration method for vector magnetograms made by the Solar Flare Telescope of BOAO. To identify Fe I 6302.5 line, we have scanned monochromatic images of the line integrated over filter passband, changing the location of the central transmission wavelength of a Lyot filter. Then we obtained a filter-convolved line profile, which is in good agreement with spectral atlas data provided by the Sacramento Peak Solar Observatory. The line profile has been used to derive calibration coefficients of longitudinal and transverse fields, employing the conventional line slope method under the weak field approximation. Our improved nonlinear calibration method has also been used to calculate theoretical Stokes polarization signals with various angles of inclination of magnetic fields. For its numerical test, we have compared input magnetic fields with the calibrated ones, which have been derived from the new improved non-linear method and the conventional method respectively. The numerical test shows that the calibrated fields obtained from the improved method are consistent with the input fields, but not with those from the conventional method. Finally, we applied our new improved method to a dipole model which characterizes a typical field configuration of a single, round sunspot. It is noted that the conventional method remarkably underestimates the transverse field component near the inner penumbra.

  • PDF

Mohr-Coulomb Failure Criterion with Tensile Strength in Sand (모래에서 인장력을 고려한 Mohr-Coulomb 파괴규준)

  • Kim, Tae-Hyung;Lee, Yong-Su;Hwang, Woong-Ki;Kang, Ki-Min;Ahn, Yonug-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.963-971
    • /
    • 2008
  • Unsaturated soil mechanics has been often used to find out a cause of failure (tensile failure) of retaining walls and hill slopes containing sandy soils. Checking shear strength is a popular method by considering suction stress developed form pore water menisci among the grains and saturated pockets of pore water under negative pressure. Linear Mohr-Coulomb failure criterion is generally adopted as a failure criterion. However, depending on relative density, stress history, and the magnitude of stress, the failure behavior of sand may not follow linear M-C frictional behavior. For stress in the large compressive ranges, say from tens to hundreds of kPa, the linear M-C criterion is an adequate representation for the shear strength behavior of sand. However, less than tens of kPa, the M-C criterion often can not be accurately represented. Depending on failure criterion, the uniaxial tensile strength is different over 100% relative error. For sand behavior under small compression regimes, therefore, such as under low or zero gravity, or under undergoing tensile failure in the crest area of hill slopes or behind retaining walls, it is important to consider the non-linear behavior.

  • PDF

Prediction of Final Construction Cost and Duration by Forecasting the Slopes of Cost and Time for Each Stage (공사 진행단계별 기울기 추정을 통한 최종 공사비 및 공기 예측)

  • Jin, Eui-Jae;Kwak, Soo-Nam;Kim, Du-Yon;Kim, Hyoung-Kwan;Han, Seung-Heon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.137-142
    • /
    • 2006
  • Cost and duration is important factors which directly affect profit therefore must be forecasted correctly to accomplish success of projects. So construction company uses EVMS(Earned Value Management System) to forecast final cost and duration. But previous forecasting model has low accuracy because of its linear forecasting method and can't reflect characteristic of company and project and changes as each progress. This paper presents cost and duration forecasting model using the slope prediction of cost and duration as each progress to reflect the various characteristics of construction industry. EVMS data of 23 road construction projects was used to make up regression analysis equation of slope forecasting model.

  • PDF

Determination of Hydrophyte Index of Native Plant on the Downstream Slope of Earth Fill Dam (필댐 하류사면 자생식물의 습생지수 결정)

  • Kim, Hyun Soo;Ryu, Bum Hee;Park, Seung Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.131-144
    • /
    • 2019
  • The purpose of study was to determine the hygrophyte index of each plant(HIP) considering the moisture environment condition (MEC) of the native plants on the downstream slope of the fill dam and evaluate its applicability which to develop a method to search for leaks and saturated zones of the fill dam for status evaluation of precision safety diagnosis. The HIP was weighted average and consisted of 19 ranks. The weighted average was calculated according to the following three procedures: First, the linear assumption was made according to the actual habitat environmental conditions, the second one was weighted to 10% of the optimal habitat condition, and finally the average value of the distribution range values. The Hygrophyte index of vegetation at each plot (HIV) was obtained from the Sinheung reservoir (Yesan-gun, Chungcheongnam-do) using the results of vegetation survey of the Sinheung reservoir with precision safety diagnosis and suggested the use of the hygrophyte index of the cultivated vegetation. The average HIP range of plant species that emerged in 50 survey sites on the downstream slope of the Sinheung reservoir is 2.99 to 3.56. The coefficient of variation showed a large difference depending on the appearance of the leakage indicator plant(LIP) species. The range of HIV is 2.80 to 4.26, the mean value is 3.37, standard deviation is 0.37 and the coefficient of variation is 9.7%. As a result, the value of the coefficient of variation showed a large difference depending on the appearance of the plant species.

Design of Road Surface Drainage Facilities Based on Varied Flow Analysis (부등류 해석을 기반으로 한 노면배수시설 설계)

  • Ku, Hye-Jin;Kim, Jin-Soo;Park, Hyung-Seop;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1173-1185
    • /
    • 2008
  • The design methods of the road surface drainage facilities were compared for the improvement of design method. We have developed four computational design models classified by the methods to determine the duration of design rainfall and to analyze the flow of a linear drainage channel. The critical duration was determined by assuming the critical duration to be 10 minutes or by finding the duration of design storm being similar to the travel time of flow by trial and error. The flow of a linear drainage channel was analyzed as the uniform flow or the varied flow. The design models were applied to the artificial road surface drainage facilities with various channel slopes and road shoulder slopes. If the rainfall intensity of the 10 minutes duration was applied, the outlet spacing obtained from the design based on the varied flow analysis was larger than the uniform flow analysis only when the channel slope and the road shoulder slope was small. On the other hands, if the duration of design rainfall was determined by calculating the travel time, the varied flow analysis brought about larger outlet spacing than the uniform analysis for all conditions. However, the model of the critical duration concept and the varied flow analysis resulted in smaller outlet spacing than the current design method employing the rainfall of 10 minutes duration and the uniform flow analysis.

Studies on the Dissociation Constant of Benzoic Acid and Substituted Benzoic Acids in Methanol-Water Mixtures by Conductometric Method (메탄올-물 혼합용매에서 전도도법에 의한 벤조산 및 치환된 벤조산의 해리에 관한 연구)

  • Min Soo Cho;Hyoung Ryun Park;Soon Ki Rhee;Kye Soo Lee;Bon Su Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.196-203
    • /
    • 1991
  • The $pK_a$ values of benzoic acid and meta, para-halogen substituted benzoic acids in MeOH-$H_2O$ mixtures (0∼80% of MeOH) have been determined at 25$^{\circ}$C using a conductometric method on the basis of the Fuoss-Kraus equation, and further verified using modified conductometric method of Gelb. The dependence of $pK_a$ on halogen substituents has been discussed in terms of substituent-constant (${\sigma}$), which is devided into electron-withdrawing inductive contribution (${\sigma}_1$) and electron-donating ${\pi}$-resonance one (${\sigma}_R$). The linear-dependence of ${\sigma}_1$'s on $D^{-1}$ with positive slope and that of ${\sigma}_R$'s on $D^{-1}$ with negative slope have been interpreted on the basis of field effect and through-space interaction of ${\pi}$-lone pair of halogen substituent and ionization center via ${\pi}$-system of benzene ring.

  • PDF

Long-term Trend Analysis of Major Tributaries of Nakdong River Using Water Quality Index (수질지수를 이용한 낙동강 주요 지류지천의 장기 경향성 분석)

  • Park, Jaebeom;Kal, Byungseok;Kim, Sanghun
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.201-209
    • /
    • 2018
  • In this study, the water quality index was calculated using the water quality monitoring data of the major tributaries of the Nakdong River and long-term trend analysis was performed to identify the tributaries requiring priority management. We used a Real-Time Water Quality Index method implemented by the Ministry of Environment. Linear regression as a parametric method and Mann-Kendall Test and Sen Slope Test as a nonparametric method were applied for the trend analysis. The water quality index of major tributaries except for Migeon2 and Seokyo2 was in the range below Fair grade and there were no significant trends for the rest of the sites except Bukan, Chennae, Hogye, Yongdeok. Therefore, in order to improve the water quality of the main stream, management of the tributaries should be preceded.

Numerical Analysis for Carinthian Cut and Cover Tunnelling Method (카린시안 터널 공법의 기준 제안을 위한 수치 해석적 연구 - 국내 고속철도 복선터널 표준 단면을 기준으로 -)

  • Roh, Byoung-Kuk;Baek, Seung-Kyu;Cha, Min-Woong
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2013
  • Carinthian cut and cover tunnelling method which combines cut & cover and NATM tunnel excavation method has increased the interest. Design and construction of arch concrete have been increased, but there is no applicable standards for arch concrete. Therefore, in this study numerical analysis was performed to propose standards for the Carinthian tunnelling method considering a variety of conditions such as ground conditions, tunnel overburden thickness, thickness of backfill, and overburden surface slope angle changes, linear regression equations derived to classify and organize a rational, economical, and safe Carinthian cut and cover tunneling method based proposed.

Standard Measurement Procedure for Soil Radon Exhalation Rate and Its Uncertainty

  • Seo, Jihye;Nirwono, Muttaqin Margo;Park, Seong Jin;Lee, Sang Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • Background: Radon contributing about 42% of annual average dose, mainly comes from soil. In this paper, standard measurement procedures for soil radon exhalation rate are suggested and their measurement uncertainties are analyzed. Materials and Methods: We used accumulation method for estimating surface exhalation rate. The closed-loop measurement system was made up with a RAD7 detector and a surface chamber. Radon activity concentrations in the system were observed as a function of time, with data collection of 5 and 15-minute and the measurement time of 4 hours. Linear and exponential fittings were used to obtain radon exhalation rates from observed data. Standard deviations of measurement uncertainties for two approaches were estimated using usual propagation rules. Results and Discussion: The exhalation rates (E) from linear approach, with 30 minutes measurement time were $44.8-48.6mBq{\cdot}m^{-2} {\cdot}s^{-1}$ or $2.14-2.32atom{\cdot}cm^{-2}{\cdot}s^{-1}$ with relative measurement uncertainty of about 10%. The contributions of fitting parameter A, volume (V) and surface (S) to the estimated measurement uncertainty of E were 59.8%, 30.1% and 10.1%, in average respectively. In exponential fitting, at 3-hour measurement we had E ranged of $51.6-69.2mBq{\cdot}m^{-2} {\cdot}s^{-1}$ or $2.46-3.30atom{\cdot}cm^{-2}{\cdot}s^{-1}$ with about 15% relative uncertainty. Fitting with 4-hour measurement resulted E about $51.3-68.2mBq{\cdot}m^{-2} {\cdot}s^{-1}$ or $2.45-3.25atom{\cdot}cm^{-2}{\cdot}s^{-1}$ with 10% relative uncertainty. The uncertainty contributions in exponential approach were 75.1%, 13.4%, 8.7%, and 2.9% for total decay constant k, fitting parameter B, V, and S, respectively. Conclusion: In obtaining exhalation rates, the linear approach is easy to apply, but by saturation feature of radon concentrations, the slope tends to decrease away from the expected slope for extended measurement time. For linear approach, measurement time of 1-hour or less was suggested. For exponential approach, the obtained exhalation rates showed similar values for any measurement time, but measurement time of 3-hour or more was suggested for about 10% relative uncertainty.