• 제목/요약/키워드: Linear Multiple Regression Method

검색결과 453건 처리시간 0.026초

Outlier Identification in Regression Analysis using Projection Pursuit

  • Kim, Hyojung;Park, Chongsun
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.633-641
    • /
    • 2000
  • In this paper, we propose a method to identify multiple outliers in regression analysis with only assumption of smoothness on the regression function. Our method uses single-linkage clustering algorithm and Projection Pursuit Regression (PPR). It was compared with existing methods using several simulated and real examples and turned out to be very useful in regression problem with the regression function which is far from linear.

  • PDF

다중 선형 회귀 기반 기계 학습을 이용한 인공지지체의 사각 기공 형태 진단 모델에 관한 연구 (A Study on Square Pore Shape Discrimination Model of Scaffold Using Machine Learning Based Multiple Linear Regression)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제19권4호
    • /
    • pp.59-64
    • /
    • 2020
  • In this paper, we found the solution using data based machine learning regression method to check the pore shape, to solve the problem of the experiment quantity occurring when producing scaffold with the 3d printer. Through experiments, we learned secured each print condition and pore shape. We have produced the scaffold from scaffold pore shape defect prediction model using multiple linear regression method. We predicted scaffold pore shapes of unsecured print condition using the manufactured scaffold pore shape defect prediction model. We randomly selected 20 print conditions from various predicted print conditions. We print scaffold five times under same print condition. We measured the pore shape of scaffold. We compared printed average pore shape with predicted pore shape. We have confirmed the prediction model precision is 99 %.

전자출판에서 입.출력 장치의 컬러 관리에 관한 연구 (I) (A Study on Color Management of Input and Output Device in Electronic Publishing (I))

  • 조가람;김재해;구철회
    • 한국인쇄학회지
    • /
    • 제25권1호
    • /
    • pp.11-26
    • /
    • 2007
  • In this paper, an experiment was done where the input device used the linear multiple regression and the sRGB color space to perform a color transformation. The output device used the GOG, GOGO and sRGB for the color transformation. After the input device underwent a color transformation, a $3\;{\times}\;20\;size$ matrix was used in a linear multiple regression and the scanner's color representation of scanner was better than a digital still camera's color representation. When using the sRGB color space, the original copy and the output copy had a color difference of 11. Therefore it was more efficient to use the linear multiple regression method than using the sRGB color space. After the input device underwent a color transformation, the additivity of the LCD monitor's R, G and B signal value improved and therefore the error in the linear formula transformation decreased. From this change, the LCD monitor with the GOG model applied to the color transformation became better than LCD monitors with other models applied to the color transformation. Also, the color difference varied more than 11 from the original target in CRT and LCD monitors when a sRGB color transformation was done in restricted conditions.

  • PDF

불특정 공식손상을 가진 316L 스테인리스강의 기계적 물성치 예측을 위한 다중선형회귀 적용 (Application of Multiple Linear Regression to Predict Mechanical Properties of 316L Stainless Steel with Unspecified Pit Corrosion)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.55-63
    • /
    • 2023
  • The aim of this study was to propose a multiple linear regression (MLR) equation to predict ultimate tensile strength (UTS) of 316L stainless steel with unspecified pit corrosion. Tensile specimens with pit corrosion were prepared using a potentiostatic acceleration test method. Pit corrosion was characterized by measuring ten factors using a confocal laser microscope. Data were collected from 22 tensile tests. At 85% confidence level, total pit volume, maximum pit depth, mean ratio of surface area, and mean area were significant factors showing linear relationships with UTS. The MLR equation using these three significant factors at a 85% confidence level showed considerable prediction performance for UTS. Determination coefficient (R2) was 0.903 with training and test data sets. The yield strength ratio of 316L stainless steel was found to be around 0.85. All specimens with a pit corrosion presented a yield ratio of approximately 0.85 with R2 of 0.998. Therefore, pit corrosion did not affect the yield ratio.

Robust inference for linear regression model based on weighted least squares

  • 박진표
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.271-284
    • /
    • 2002
  • In this paper we consider the robust inference for the parameter of linear regression model based on weighted least squares. First we consider the sequential test of multiple outliers. Next we suggest the way to assign a weight to each observation $(x_i,\;y_i)$ and recommend the robust inference for linear model. Finally, to check the performance of confidence interval for the slope using proposed method, we conducted a Monte Carlo simulation and presented some numerical results and examples.

  • PDF

단기수요예측 알고리즘 (An Algorithm of Short-Term Load Forecasting)

  • 송경빈;하성관
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권10호
    • /
    • pp.529-535
    • /
    • 2004
  • Load forecasting is essential in the electricity market for the participants to manage the market efficiently and stably. A wide variety of techniques/algorithms for load forecasting has been reported in many literatures. These techniques are as follows: multiple linear regression, stochastic time series, general exponential smoothing, state space and Kalman filter, knowledge-based expert system approach (fuzzy method and artificial neural network). These techniques have improved the accuracy of the load forecasting. In recent 10 years, many researchers have focused on artificial neural network and fuzzy method for the load forecasting. In this paper, we propose an algorithm of a hybrid load forecasting method using fuzzy linear regression and general exponential smoothing and considering the sensitivities of the temperature. In order to consider the lower load of weekends and Monday than weekdays, fuzzy linear regression method is proposed. The temperature sensitivity is used to improve the accuracy of the load forecasting through the relation of the daily load and temperature. And the normal load of weekdays is easily forecasted by general exponential smoothing method. Test results show that the proposed algorithm improves the accuracy of the load forecasting in 1996.

Price Monitoring Automation with Marketing Forecasting Methods

  • Oksana Penkova;Oleksandr Zakharchuk;Ivan Blahun;Alina Berher;Veronika Nechytailo;Andrii Kharenko
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.37-46
    • /
    • 2023
  • The main aim of the article is to solve the problem of automating price monitoring using marketing forecasting methods and Excel functionality under martial law. The study used the method of algorithms, trend analysis, correlation and regression analysis, ANOVA, extrapolation, index method, etc. The importance of monitoring consumer price developments in market pricing at the macro and micro levels is proved. The introduction of a Dummy variable to account for the influence of martial law in market pricing is proposed, both in linear multiple regression modelling and in forecasting the components of the Consumer Price Index. Experimentally, the high reliability of forecasting based on a five-factor linear regression model with a Dummy variable was proved in comparison with a linear trend equation and a four-factor linear regression model. Pessimistic, realistic and optimistic scenarios were developed for forecasting the Consumer Price Index for the situation of the end of the Russian-Ukrainian war until the end of 2023 and separately until the end of 2024.

An Innovative Application Method of Monthly Load Forecasting for Smart IEDs

  • Choi, Myeon-Song;Xiang, Ling;Lee, Seung-Jae;Kim, Tae-Wan
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.984-990
    • /
    • 2013
  • This paper develops a new Intelligent Electronic Device (IED), and then presents an application method of a monthly load forecasting algorithm on the smart IEDs. A Multiple Linear Regression (MLR) model implemented with Recursive Least Square (RLS) estimation is established in the algorithm. Case Study proves the accuracy and reliability of this algorithm and demonstrates the practical meanings through designed screens. The application method shows the general way to make use of IED's smart characteristics and thereby reveals a broad prospect of smart function realization in application.

극한 파고 계산에 있어서 Type III 분포의 응용 (Applications of the Type III Asymptotic Distribution for Extreme Sea Level Computations)

  • 이태일;권순홍;전영기
    • 대한조선학회논문집
    • /
    • 제29권2호
    • /
    • pp.1-7
    • /
    • 1992
  • 본 연구를 통하여 극한 파고를 계산하는 방법들을 제시하였다. Type III 분포에 근거해서 분포 함수의 파라미터 산출을 위하여 non-linear multiple regression 방법, skewness 방법, maximum likelihood방법들을 사용하였다. 좀 더 정확한 결과를 얻기 위하여 추정된 분포 함수의 차이를 다항식을 도입하여 맞추었다. 제시한 방법을 응용하여 계산 예들을 보였다.

  • PDF

다중 회귀 분석을 이용한 한자 난이도 예측 기법 연구 (Prediction Techniques for Difficulty Level of Hanja Using Multiple Linear Regression)

  • 최정환;노지우;김순태
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.219-225
    • /
    • 2019
  • 한자 급수와 같이 기존 한자 난이도 선정 방식에 문제점이 있다. 실생활에서 쓰이는 한글 단어와 차이가 나며 해당 급수가 실제로 얼마나 많이 쓰이는지 알 수가 없다. 이러한 문제를 해결하기 위해 빈도수를 이용하여 다중 회귀 분석을 이용하여 한자 난이도를 측정한다. 초등 교과서를 기반으로 한자활용빈도수와 한글의미빈도수를 집계한다. 두 빈도수와 획수를 함께 사용하여 설문지를 작성하여 해당 한자의 학습 적정 시기를 답변 받아 이를 회귀에서 사용할 타겟 변수로 이용한다. 단계별 회귀분석을 이용하여 적절한 피처를 선택하고 다중 선형 회귀 분석을 한다. 모델의 R2는 0.1105가 나왔으며 RMSE는 0.1105의 결과가 나왔다.