• 제목/요약/키워드: Linear Matrix Inequalities(LMIs)

검색결과 156건 처리시간 0.033초

불확실성이 존재하는 네트워크 제어시스템의 강인 지연의존 안정성 판별법 (Robust Delay-dependent Stability Criterion for Uncertain Networked Control System)

  • 박명진;권오민;박주현
    • 대한임베디드공학회논문지
    • /
    • 제4권2호
    • /
    • pp.97-102
    • /
    • 2009
  • In this paper, the problem of stability analysis for networked control systems with norm-bounded parameter uncertainties is investigated. By construction Lyapunov's functional, a new delay-dependent stability criterion for uncertain networked control system is established in terms of LMIs (linear matrix inequalities) which can be easily by various convex optimization algorithms. One numerical example is included to show the effectiveness of proposed criterion.

  • PDF

DELAY-DEPENDENT GLOBAL ASYMPTOTIC STABILITY ANALYSIS OF DELAYED CELLULAR NEURAL NETWORKS

  • Yang, Yitao;Zhang, Yuejin
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.583-596
    • /
    • 2010
  • In this paper, the problem of delay-dependent stability analysis for cellular neural networks systems with time-varying delays was considered. By using a new Lyapunov-Krasovskii function, delay-dependant stability conditions of the delayed cellular neural networks systems are proposed in terms of linear matrix inequalities (LMIs). Examples are provided to demonstrate the reduced conservatism of the proposed stability results.

Adaptive Fault-Tolerant Dynamic Output Feedback Control for a Class of Linear Time-Delay Systems

  • Ye, Dan;Yang, Guang-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.149-159
    • /
    • 2008
  • This paper considers the problem of adaptive fault-tolerant guaranteed cost controller design via dynamic output feedback for a class of linear time-delay systems against actuator faults. A new variable gain controller is established, whose gains are tuned by the designed adaptive laws. More relaxed sufficient conditions are derived in terms of linear matrix inequalities (LMIs), compared with the corresponding fault-tolerant controller with fixed gains. A real application example about river pollution process is presented to show the effectiveness of the proposed method.

Intelligent Scheduling Control of Networked Control Systems with Networked-induced Delay and Packet Dropout

  • Li, Hongbo;Sun, Zengqi;Chen, Badong;Liu, Huaping;Sun, Fuchun
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.915-927
    • /
    • 2008
  • Networked control systems(NCSs) have gained increasing attention in recent years due to their advantages and potential applications. The network Quality-of-Service(QoS) in NCSs always fluctuates due to changes of the traffic load and available network resources. To handle the network QoS variations problem, this paper presents an intelligent scheduling control method for NCSs, where the sampling period and the control parameters are simultaneously scheduled to compensate the effect of QoS variation on NCSs performance. For NCSs with network-induced delays and packet dropouts, a discrete-time switch model is proposed. By defining a sampling-period-dependent Lyapunov function and a common quadratic Lyapunov function, the stability conditions are derived for NCSs in terms of linear matrix inequalities(LMIs). Based on the obtained stability conditions, the corresponding controller design problem is solved and the performance optimization problem is also investigated. Simulation results are given to demonstrate the effectiveness of the proposed approaches.

시변 지연이 존재하는 선형시스템의 개선된 안정성 판별법 (Improved Stability Criteria for Linear Systems with Time-varying Delay)

  • 권오민;박주현;이상문
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2284-2291
    • /
    • 2010
  • In this paper, improved stability criteria for linear systems with time-varying delays are proposed. By constructing a new Lyapunov functional, novel stability criteria are established in terms of linear matrix inequalities (LMIs). Two numerical examples are carried out to support the effectiveness of the proposed method.

H$\infty$ controller design for input-saturated linear systems

  • Choi, Ki-Hoon;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.75.2-75
    • /
    • 2001
  • In this paper, we provide the technique of H$\infty$ controller design algorithm for input-saturated linear systems using a linear parameter varying(LPV) framework. The LPV controller with parameter dependent dynamic state feedback controller concept guarantees the asymtotic stability and H$\infty$ norm bound within prescribed level v using the saturation nonlinearity as scheduling parameters. Especially, the sufficient conditions for the existence of H$\infty$ controller are formulated in terms of linear matrix inequalities(LMIs) that can be solved very efficiently.

  • PDF

Controller Design for Input-Saturated Linear Systems

  • C., Doojin;P., PooGyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.126-126
    • /
    • 2000
  • In this paper, we provide an approach of controller synthesis for input-saturated linear systems by a linear parameter varying (LPV) framework. Using directly the saturation nonlinearity as scheduling parameters, we propose an LPV-stabilizer with parameter-dependent dynamic state-feedback controller concept. Especially, the synthesis conditions are formulated in terms of linear matrix inequalities (LMIs) that can be solved very efficiency.

  • PDF

New Stability Criteria for Linear Systems with Interval Time-varying State Delays

  • Kwon, Oh-Min;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권5호
    • /
    • pp.713-722
    • /
    • 2011
  • In the present paper, the problem of stability analysis for linear systems with interval time-varying delays is considered. By introducing a new Lyapunov-Krasovskii functional, new stability criteria are derived in terms of linear matrix inequalities (LMIs). Two numerical examples are given to show the superiority of the proposed method.

Controller Design for Fuzzy Systems via Piecewise Quadratic Value Functions

  • Park, Jooyoung;Kim, JongHo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.300-305
    • /
    • 2004
  • This paper concerns controller design for the Takagi-Sugeno (TS) fuzzy systems. The design method proposed in this paper is derived in the framework of the optimal control theory utilizing the piecewise quadratic optimal value functions. The major part of the proposed design procedure consists of solving linear matrix inequalities (LMIs). Since LMIs can be solved efficiently within a given tolerance by the recently developed interior point methods, the design procedure of this paper is useful in practice. A design example is given to illustrate the applicability of the proposed method.

선형 슬라이딩 평면의 개선된 존재 조건 (An Improved Existence Condition of Linear Sliding Surfaces)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.851-855
    • /
    • 2007
  • This paper deals with the problem of designing a linear sliding surface design for a class of uncertain systems with mismatched unstructured uncertainties. The uncertain system under consideration may have mismatched parameter uncertainties in the state matrix as well as in the input matrix. In terms of linear matrix inequalities (LMIs), we give a sufficient condition for the existence of linear sliding surfaces guaranteeing the asymptotic stability of the sliding mode dynamics. We show that our LMI condition can be less conservative than the existing conditions and our result supplement the existing results. Finally, we give a numerical example showing that our method can be better than the previous results.