• Title/Summary/Keyword: Linear Inflow

Search Result 91, Processing Time 0.03 seconds

Optimized Allocation of Water for the Multi-Purpose Use in Agricultural Reservoirs (농업용 저수지의 다목적 이용을 위한 용수의 적정배분)

  • 신일선;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.125-137
    • /
    • 1987
  • The purpose of this paper is to examine some difficulties in water management of agricultural reservoirs in Korea, for there are approximately more than 15,000 reservoirs which are now being utilized for the purpose of irrigation, along with the much amount of expenses and labors to be invested against droughts and floods periodically occurred. Recently, the effective use of water resources in the agricultural reservoirs with a single purpose, is becomming multiple according to the alterable environment of water use. Therefore, the task to allocate agricultural water rationally and economically must be solved for the multiple use of agricultural reservoirs. On the basis of the above statement, this study aims at suggesting the rational method of water management by introducing an optimal technique to allocate the water in an existing agricultural reservoir rationally, for the sake of maximizing the economic effect. To achieve this objective, a reservoir, called "0-Bongje" as a sample of the case study, is selected for an agricultural water development proiect of medium scale. As a model for the optimum allocation of water in the multi-purpose use of reservoirs a linear programming model is developed and analyzed. As a result, findings of the study are as follows : First, a linear programing model is developed for the optimum allocation of water in the multi-purpose use of agricultural reservoirs. By adopting the model in the case of reservoir called "O-Bongje," the optimum solution for such various objects as irrigation area, the amount of domestic water supply, the size of power generation, and the size of reservoir storage, etc., can be obtained. Second, by comparing the net benefits in each object under the changing condition of inflow into the reservoir, the factors which can most affect the yearly total net benefit can be drawn, and they are in the order of the amount of domestic water supply, irrigation area, and power generation. Third, the sensitivity analysis for the decision variable of irrigation which may have a first priority among the objects indicate that the effective method of water management can be rapidly suggested in accordance with a condition under the decreasing area of irrigation. Fourth, in the case of decision making on the water allocation policy in an existing multi-purpose reservoir, the rapid comparison of numerous alternatives can be possible by adopting the linear programming model. Besides, as the resources can be analyed in connection with various activities, it can be concluded that the linear programing model developed in this study is more quantitative than the traditional methods of analysis. Fifth, all the possible constraint equations, in using a linear programming model for adopting a water allocation problem in the agricultural reservoirs, are presented, and the method of analysis is also suggested in this study. Finally, as the linear programming model in this study is found comprehensive, the model can be adopted in any different kind of conditions of agricultural reservoirs for the purpose of analyzing optimum water allocation, if the economic and technical coefficients are known, and the decision variable is changed in accordance with the changing condition of irrigation area.

  • PDF

Assessment of the Contribution of Weather, Vegetation and Land Use Change for Agricultural Reservoir and Stream Watershed using the SLURP model (II) - Calibration, Validation and Application of the Model - (SLURP 모형을 이용한 기후, 식생, 토지이용변화가 농업용 저수지 유역과 하천유역에 미치는 기여도 평가(II) - 모형의 검·보정 및 적용 -)

  • Park, Geun-Ae;Ahn, So-Ra;Park, Min-Ji;Kim, Seong-Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.121-135
    • /
    • 2010
  • This study is to assess the effect of potential future climate change on the inflow of agricultural reservoir and its impact to downstream streamflow by reservoir operation for paddy irrigation water supply using the SLURP. Before the future analysis, the SLURP model was calibrated using the 6 years daily streamflow records (1998-200398 and validated using 3 years streamflow data (2004-200698 for a 366.5 $km^2$ watershed including two agricultural reservoirs (Geumgwang8 and Gosam98located in Anseongcheon watershed. The calibration and validation results showed that the model was able to simulate the daily streamflow well considering the reservoir operation for paddy irrigation and flood discharge, with a coefficient of determination and Nash-Sutcliffe efficiency ranging from s 7 to s 9 and 0.5 to s 8 respectively. Then, the future potential climate change impact was assessed using the future wthe fu data was downscaled by nge impFactor method throuih bias-correction, the future land uses wtre predicted by modified CA-Markov technique, and the future ve potentiacovfu information was predicted and considered by the linear regression bpowten mecthly NDVI from NOAA AVHRR ima ps and mecthly mean temperature. The future (2020s, 2050s and 2e 0s) reservoir inflow, the temporal changes of reservoir storaimpand its impact to downstream streamflow watershed wtre analyzed for the A2 and B2 climate change scenarios based on a base year (2005). At an annual temporal scale, the reservoir inflow and storaimpchange oue, anagricultural reservoir wtre projected to big decrease innautumnnunder all possiblmpcombinations of conditions. The future streamflow, soossmoosture and grounwater recharge decreased slightly, whtre as the evapotransporation was projected to increase largely for all possiblmpcombinations of the conditions. At last, this study was analysed contribution of weather, vegetation and land use change to assess which factor biggest impact on agricultural reservoir and stream watershed. As a result, weather change biggest impact on agricultural reservoir inflow, storage, streamflow, evapotranspiration, soil moisture and groundwater recharge.

Removal Characteristics of Nitrogen Oxides (NOx) in Low Concentration using Peat-Mixed Media (피트(peat) 혼합담체를 이용한 저농도 질소산화물(NOx) 제거특성)

  • Kang, Young-Heoun;Kim, Deok-Woo;Kang, Seon-Hong;Kwon, Pil-Joo;Kim, Dal-Woo;Hwang, Pil-Gi;Shim, Sang-Bo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.330-338
    • /
    • 2010
  • In this study, removal characteristics of nitrogen oxides $(NO_x)$ from road transport by using peat as the packing media for biodegradation have been investigated in the long term. Physicochemical and biological treatment of peatmixed media eliminates any requirement to use chemical substances and also facilitates the biodegradable actions of microorganism. Safe biodegradation of pollutants, no need to apply additional microbes owing to their active growth, and no generation of secondary pollutants were found in this experiment. It was concluded that average removal efficiencies of nitric oxide (NO) and nitrogen dioxide $(NO_2)$ were 80% and 97% respectively with respect to the linear velocity 35~40 mm/s and 0.3 ppm ozone concentration in the long period operation. Inflow concentration of nitric oxide over 0.05 ppm was suitable when pretreated with ozone. Non-ozone stage was performed with linear velocity 20~100 mm/s and then the average removal efficiency of nitric oxide and nitrogen dioxide were 38% and 94% respectively. Other results showed that the apparent static pressure was raised with increases in applied water content and aerial velocity in mixed media during fan operation.

Hydrodynamic fish modeling for potential-expansion evaluations of exotic species (largemouth bass) on waterway tunnel of Andong-Imha Reservoir

  • Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.125-135
    • /
    • 2016
  • Background: The objectives of this study were to establish a swimming capability model for largemouth bass using the FishXing (version 3) program, and to determine the swimming speed and feasibility of fish passage through a waterway tunnel. This modeling aimed to replicate the waterway tunnel connecting the Andong and Imha Reservoirs in South Korea, where there is a concern that largemouth bass may be able to pass through this structure. As largemouth bass are considered an invasive species, this spread could have repercussions for the local environment. Results: Flow regime of water through the waterway tunnel was calculated via the simulation of waterway tunnel operation, and the capability of largemouth bass to pass through the waterway tunnel was then estimated. The swimming speed and distance of the largemouth bass had a positive linear function with total length and negative linear function with the flow rate of the waterway tunnel. The passing rate of small-size largemouth bass (10-30 cm) was 0%at a flow of $10m^3/s$ due to rapid exhaustion from prolonged upstream swimming through the long (1.952 km) waterway tunnel. Conclusions: The results of FishXing showed that the potential passing rate of large size largemouth bass (>40 cm) through the waterway tunnel was greater than 10%; however, the passage of largemouth bass was not possible because of the mesh size ($3.4{\times}6.0cm$) of the pre-screening structures at the entrance of the waterway tunnel. Overall, this study suggests that the spread of largemouth bass population in the Imha Reservoir through the waterway tunnel is most likely impossible.

Numerical Computations for Hydrofoil-Generated Nonlinear Waves (수중익에 의한 비선형 조파현상의 수치해석)

  • Hong-Gi Lee;Kwang-June Bai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.3
    • /
    • pp.29-40
    • /
    • 1993
  • The fundamental characteristics of nonlinear free-surface waves generated by a shallowly submerged 3-dimensional hydrofoil are investigated. The fluid is assumed inviscid, incompressible and its motion irrotational. The surface tension on the free-surface is neglected. The hydrofoil is represented by a horseshoe vortex system whose shape is assumed fixed. Also the strengths of vortices are assumed given. The exact problem for the wave potential due to the horseshoe vortex system is formulated by the variational principle based on the classical Hamilton's principle. The localized finite element method is used in the numerical computations. In order to increase the numerical efficiency, an intermediate nonlinear-to-linear transition buffer subdomain for a smooth matching is introduced between the fully nonlinear computation subdomain and the truncated linear infinite subdomain. Also used is the modal analysis to reduce the computation tome drastically. The effect of inflow velocity, submergence depth of the hydrofoil and the shape of circulation distribution on the wave profiles are thoroughly examined. Especially it was possible to investigate the nonlinear influence of the free vortex on the free vortex. The nonlinear free-surface effect on the induced forces on the hydrofoil is also investigated.

  • PDF

Analysis of Chaos Characterization and Forecasting of Daily Streamflow (일 유량 자료의 카오스 특성 및 예측)

  • Wang, W.J.;Yoo, Y.H.;Lee, M.J.;Bae, Y.H.;Kim, H.S.
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.236-243
    • /
    • 2019
  • Hydrologic time series has been analyzed and forecasted by using classical linear models. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. Daily streamflow series at St. Johns river near Cocoa, Florida, USA showed an interesting result of a low dimensional, nonlinear dynamical system but daily inflow at Soyang reservoir, South Korea showed stochastic property. Based on the chaotic dynamical characteristic, DVS (deterministic versus stochastic) algorithm is used for short-term forecasting, as well as for exploring the properties of the system. In addition to the use of DVS algorithm, a neural network scheme for the forecasting of the daily streamflow series can be used and the two techniques are compared in this study. As a result, the daily streamflow which has chaotic property showed much more accurate result in short term forecasting than stochastic data.

Improvement of Well Efficiency through Well Development in a Pumping Well (충적층 양수정에서 우물개량을 통한 우물효율의 개선)

  • Kim, Gyoo-Bum;Kim, Byung-Woo;Kim, Sung-Yun
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.39-49
    • /
    • 2010
  • Drilling at unconsolidated layer can make the aquifer disturbed and reduce a productivity of groundwater well. Surge block and air surging were applied to a pumping well located in Jeungsan-ri, Changnyung-gun, to improve a well efficiency by removing clogging and fine-grained slime. Two experimental log-linear equations, $y_1=-0.1769\;ln(x_1)+0.4960$ and $y_2=-84.3358\;ln(x_2)+512.8162$, were proposed in this site, in which $x_1$ and $x_2$ are the number of surging event, $y_1$ is the amount of slime, and $y_2$ is a recovery time of groundwater level after air surging. Well loss exponent (P) decreased after surging, from 3.422 to 1.439, and the groundwater inflow from aquifer happened in all directions around a well with gradually increasing the homogeneity in a local aquifer's hydraulic property. It was revealed that long-term well development should be done in the pumping well which is located in unconsolidated sediments to increase a well productivity.

The Characteristics and Correlation Analyses of Chlorophyll-a Data Monitored Continuously in Daecheong Reservoir (연속 측정된 대청호 Chlorophyll-a의 자료 특성 및 상관 분석)

  • Yeon, Insung;Hong, Jiyoung;Hong, Eunyoung;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.994-999
    • /
    • 2010
  • The toxin of Cyanobacteria (blue-green algae) during summer season has been a problem and early prevention should be considered. A variety of methods can be used to forecast algal blooms and this study aims at examining feasibility of chlorophyll-a. The real-time data were collected by automatic water quality monitoring system (AWQMS) in Daecheong reservoir and invalid data were sorted by experts. And then, the sorted data were filled using linear interpolation. When the concentration of chlorophyll-a increased by $15mg/m^3$, water temperature and pH exceeded $26.8^{\circ}C$ and 9.5 respectively. As a result of correlation between chlorophyll-a and other parameters(i.e. water quality items and hydrological data), temperature (r=0.502 - 0.574), pH (r=0.583 - 0.681), total organic carbon (TOC, r=0.583 - 0.681) comparably had higher values. Meanwhile, the data around a day or two showed the highest correlation. In addition, chlorophyll-a is considered to be significantly effected by precipitation and inflow.

On the Possible Role of Local Thermal Forcing on the Japan Sea Circulation (동해의 열적작용이 해수순환에 미칠 수 있는 영향에 관한 고찰)

  • Seung, Young-Ho;Kim, Kuh
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.29-38
    • /
    • 1989
  • It has been believed that the circulation in the Japan Sea involves separation of current from the Korean coast and formation of a cold cyclonic gyre in the north. To explain this, a simple quasi-geostrophic linear model is considered. The model is basically of an inflow-outflow system. The local forcings, wind and air-sea heat exchange together with damping (both mechanical and thermal), are imposed upon. The results show that only the buoyancy damping due to perturbations from local thermal adjustment can cause the separation and the gyre. Various types of circulation patterns are possible depending on the intensity of the thermal forcing.

  • PDF

The Study of Reservoir Operation for Drought Period (가뭄기간의 저수지 운영방안에 관한 연구)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1041-1048
    • /
    • 2004
  • In this study the results of optimal water supply analysis by operating constraints of reservoirs during drought period are as follows. During drought period, water supply reliability is possible about $97\~61{\%}$ by CASE 1-CASE 5. Water supply reliability is possible about $97.3{\%}$ in case of the Andong dam and $87.7{\%}$ in case of the Imha dam by CASE 3. Also, under the constraints of CASE 4, water supply reliability is possible about $87.5{\%}$ in case of the Andong dam and $73.3{\%}$ in case of the Imha dam. The reason what low of available water supply ratio is decreased inflow of Imha dam. When compare standard deviation of average storage with standard deviation of storage, stable storage can be secured during successive drought period. And it also can minimize shortage of water during drought. therefore, it is impossible that reservoir supply sufficient water but change of operating condition is better than pervious on that followed by full reservoir level. It is need that the study for optimal water supply during drought period has to be continued.