• Title/Summary/Keyword: Linear Fresnel Lens

Search Result 8, Processing Time 0.017 seconds

Fresnel lens optics simulation with middle sized linear concentration without secondary optics (2차 광학계가 필요없는 프레넬 렌즈를 이용한 중집광 광학계 시뮬레이션)

  • Kang, Sung-Won;Kim, Yong-Sik;Sim, Chang-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.27-33
    • /
    • 2011
  • HCPV(High Concentrated PV) systems have well known for CPV market all over the world. Low concentration type silicon based modules have been introduced in the market. But low cost of standard flat silicon modules made them useless nowadays. High cost of compound semiconductor solar cell reduced cost effective cpv module production than that of recently silicon solar cell. In order to overcome increasing cost of CPV module, we study middle concentration type fresnel lens simulation using concentrated type silicon based solar cell. Linear type fresnel lens made production of CPV module without secondary optics such as light pipe or light tunnel. This type of fresnel lens design makes more cost effective solution for cpv niche market.

  • PDF

The Development of the Lens of the Optical System for High Concentration Solar PV System (고집광 태양광 발전을 위한 광학시스템 렌즈 개발)

  • Ryu, Kwang-Sun;Cha, Won-Ho;Shin, Goo-Hwan;Cho, Hee-Keun;Kim, Young-Sik;Kang, Seong-Won;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.82-88
    • /
    • 2011
  • The artificial increase in the solar intensity incident on solar cells using lenses or mirrors can allow solar cells to generate equivalent power with a lower cost. There are two types of concentration optics for solar energy conversion. One is to use mirrors, and the other is to use Fresnel lenses. The gains that can be achieved with a Fresnel lens or a parabolic mirror are compared. The result showed the gains are comparable and the two configurations were developed competitively. In application areas of Fresnel lenses as solar concentrators, several variations of design were devised and tested. Some PV systems still use commercially available flat Fresnel lenses as concentrators. A convex linear Fresnel lens to improve the concentration ratio and the efficiency is devised and flat linear Fresnel lens in thermal energy collection is utilized. In this study, we designed and optimized flat Fresnel lens and the 'light pipe' to develop 500X concentrated solar PV system. In the process, we compare the transmission efficiencies according to groove types. We performed rigorous ray tracing simulation of the flat Fresnel lenses. The computer aided simulation showed the 'grooves in case' has the better efficiency than that of 'grooves out case'. Based on the ray-trace results we designed and manufactured sample Fresnel lenses. The optical performance were measured and compared with ray-trace results. Finally, the optical efficiency was measured to be above 75%. All the design and manufacturing were performed based on that InGaP/InGaAs/Ge triple junction solar cell is used to convert the photon energy to electrical power. Field test will be made and analyzed in the near future.

Linear Fresnel Lens Optimization for Middle Concentrated Photovoltaic (중집광형 태양광 집광장치 용 선형 프레넬 렌즈의 최적화설계연구)

  • Song, Je Heon;Yu, Jin Hee;Lee, Jun Ho;Jang, Won Keun;Lee, Dong Gil
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.213-216
    • /
    • 2013
  • This paper presents a combination of linear Fresnel lenses optimized for ${\times}25$ solar concentration. The combined lens consists of $5{\times}5$ linear Fresnel lenses. Each Fresnel lens is of $10{\times}10$ mm and optimized to tilt the incoming light onto a solar cell of the same size. All of the optimized Fresnel segments have the same pattern height of 35 ${\mu}m$, draft angle of $4^{\circ}$, and edge groove round of 1 ${\mu}m$ but with different facet angles varying from $14.1^{\circ}$ to $31.2^{\circ}$. The solar concentrating efficiency of the combination is shown to be over 80% and more robust than a conventional single ${\times}25$ circular Fresnel lens in terms of pointing misalignment and manufacturing errors. A sensitivity analysis finds that the edge groove round should be kept as small as machining allows since the concentrating efficiency drops ~5% per 1 ${\mu}m$ increase of the edge groove.

Design and Fabrication of Light-guiding Plate for a Photobioreactor by Using Sunlight and Linear Fresnel Lens (태양광과 선형 프레넬 렌즈를 이용한 광생물반응기용 도광판 설계 및 제작)

  • Kim, Hun;Shin, Seong Seon;Hwang, Min Yong;Lim, Hyon Chol;Kim, Gwang Ho;Kim, Jong Tye;Jeong, Sang Hwa;Park, Jong Rak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.143-147
    • /
    • 2013
  • We present results of the optical design and fabrication of a light-guiding plate (LGP) for a photobioreactor by using sunlight and a linear Fresnel lens. LGP patterns were designed by optical simulations with an illumination design tool, LightTools, and fabricated by using a computerized numerical control machine. Optical characteristics of average deviation of illuminance distribution and light throughput efficiency were measured and compared with simulation results.

Performance Comparison Study on LFLP and DBLP Daylighting System (LFLP와 DBLP 자연채광시스템의 성능평가 비교 연구)

  • Choi, Jeon-Yong;Kang, Eun-Chul;Lee, Euy-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.799-804
    • /
    • 2011
  • The LFLP (Linear Fresnel Light Pipe) system uses a linear Fresnel lens to follow the sun and concentrates the parallel sunlight into a line. A LFLP daylighting system has been developed and updated to a DBLP (Double Blind Light Pipe) daylighting system to improve the overall system efficiency in the morning and afternoon. The new design consists of a double-blind style with a cone-shaped light transformer. The blinds are used to collect the sun's altitude and azimuth movements through the day. Behind the two sets of blinds is the light transformer, which is based on a parabolic-shaped light concentrator. The light transformer is designed to efficiently deliver light within a thirty-degree radial spread so that the light pipe can internally reflect the light. The results of scale-model tests are encouraging, and the efficiency is three times higher than that of the previous LFLP system.

Integration of a micro lens on a in-plane positioning actuator with 2-DOF (마이크로 렌즈가 집적된 2-자유도 평면구동기의 설계 및 제작)

  • Kim, Che-Heung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3322-3324
    • /
    • 1999
  • This paper studies on the design and fabrication of a micro in-plane positioning actuator integrated with a microlens. Proposed in-plane actuator is a micro XY-stage which is composed of two linear comb drive actuators being orthogonal to each other. In the fabrication of actuator, the single crystalline silicon substrate anodically bonded with a #7740 glass substrate is used because of simple release and passivation. The structure of actuator is formed on the silicon facet of bonded fixture by chlorine-based deep RIE and then released by isotropic wet etching of glass (#7740) in hydrofluoric acid solution. Fabricated actuator has a large travel range up to $30({\pm}15){\mu}m$ and high resolution less than 0.01f1l1l in each direction. Experimented resonant frequency of this actuator is 630Hz. The micro-Fresnel lens is fabricated on the square-shape glass structure prepared in the center of actuator.

  • PDF

Micromachining Characteristics inside Transparent Materials using Femtoseocond Laser Pulses (펨토초 레이저에 의한 투명 유리내부 미세가공특성)

  • Nam Ki-Gon;Cho Sung-Hak;Chang Won-Seok;Na Suck-Joo;Whang Kyung-Hyun;Kim Jae-Gu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.190-196
    • /
    • 2006
  • Transparent materials are widely used in the fields of optic parts and bio industry. We have experiment to find out the characteristics of the micromachining inside transparent materials using femtosecond laser pulses. With its non-linear effects by very high peak intensity, filament (plasma channel) was formed by the cause of the self-focusing and the self-defocusing. Physical damage could be found when the intensity is high enough to give rise to the thermal stress or evaporation. At the vicinity of the power which makes the visible damage or modification, the structural modification occurs with the slow scanning speed. According to the polarization direction to the scanning direction, the filament quality is quite different. There is a good quality when the polarization direction is parallel to the scanning direction. For fine filament, we could suggest the conditions of the high numerical aperture lens, the short shift of focusing point, the low scanning speed and the low power below 20 mW. As the examples of optics parts, we fabricated the fresnel zone plate with the $225{\mu}m$ diameter and Y-bend optical wave guide with the $5{\mu}m$ width.