• Title/Summary/Keyword: Linear Frequency Modulation

Search Result 157, Processing Time 0.026 seconds

Harmonic Characteristic Analysis of a Modified Trapezoidal PWM Inverter (Modified Trapezoidal PWM 인버터 고조파 특성 해석)

  • 조우성;김인동;노의철;김만고;전성즙;조철제;문성득
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.256-259
    • /
    • 1999
  • A new PWM method for voltage source inverters is described. The switching instants determination of the proposed PWM scheme is simple. Therefore, hardware implementation with a microprocessor system is easy and high frequency operation of an inverter can be obtained. The maximum line-to-line output voltage of 3-phase inverter with the proposed scheme is larger than that of the SPWM inverter under a linear modulation region. Principle of the proposed PWM method is described and harmonic characteristic analysis is carried out.

  • PDF

An Improved Saw Tooth Carrier PWM Method for Three Phase Voltage Source Inverters (3상 전압원 인버터를 위한 개선된 톱니 반송파 펄스 폭 변조 방법)

  • Park, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.302-305
    • /
    • 1995
  • An improved carrier PWM method for three phase voltage source inverters is proposed. The basic idea of the proposed method is deleting unnecessary 1/3 of switchings in the saw tooth carrier PWM method. The lowest frequency of the remained harmonics of this method (when the modulation index is large) is about 50% higher and the maximum modulated voltage is about 15% higher than those of the triangular carrier PWM method. This method will be useful especially in the linear feedback current control and MOSFET inverters.

  • PDF

Linear Diversity Analysis for M-ary Square Quadrature Amplitude Modulation over Nakagami Fading Channels

  • Yoon, Dong-Weon;Chang, Dae-Ig;Kim, Nae-Soo;Woo, Hoon-Shik
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.231-237
    • /
    • 2003
  • We derive and analyze the exact closed-form expression for the average bit error probability (BEP) of M-ary square quadrature amplitude modulation (QAM) for diversity reception in frequency-nonselective Nakagami fading. A maximal ratio combining (MRC) diversity technique with independent or correlated fading cases are considered. Numerical results demonstrate error performance improvement with the use of MRC diversity reception. The presented new expressions offer a convenient way to evaluate the performance of M-ary square QAM with an MRC diversity combiner for various cases of practical interest.

  • PDF

Development of a Signal Conditioning Circuit for Capacitive Displacement Sensors and Performance Evaluation (정전용량형 변위 센서 신호 처리 회로 개발 및 성능 평가)

  • Kim, Jong-Ahn;Kim, Jae-Wan;Eom, Tae-Bong;Kang, Chu-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.60-67
    • /
    • 2007
  • A signal conditioning circuit for capacitive displacement sensors was developed using a high frequency modulation/demodulation method, and its performance was evaluated. Since capacitive displacement sensors can achieve high resolution and linearity, they have been widely used as precision sensors within the range of several hundred micrometers. However, they inherently have a limitation in low frequency range and some nonlinearity characteristics and so a specially designed signal conditioning circuit is needed to handle these properties. The developed signal processing circuit consists of three parts: linearization, modulation/demodulation, and nonlinearity compensation. Each part was constructed discretely using several IC chips and passive elements. An evaluation system for precision displacement sensors was developed using a laser interferometer, a precision stage, and a PID position controller. The signal processing circuit was tested using the evaluation system in the respect of resolution, repeatability, linearity, and so on. From the experimental results, we know that a highly linear voltage output can be obtained successfully, which is proportional to displacement and the nonlinearity of output is less than 0.02% of full range. However, in the future, further investigation is required to reduce noise level and phase delay due to a low-pass filter. The evaluation system also can be applied effectively to calibration and evaluation of precision sensors and stages.

The Performance Comparison of Frequency Translators Using RHTL and LHTL Phase Shifters (RHTL과 LHTL 형태의 위상변위기를 이용한 주파수 변환기 성능비교)

  • Han, Heejae;Park, Hongwoo;Kim, Hongjoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.371-375
    • /
    • 2014
  • In this paper, we compared the performances of the Right Handed Transmission Line (RHTL) and the Left Handed Transmission Line (LHTL) phase shifters as a frequency translator. Unlike other phase shifters, both phase shifters show a $0^{\circ}-360^{\circ}$ phase variation for a broadband frequency and compact in size which are ideal to use as a frequency translator. For the performance comparison, we fabricated both a RHTL and a LHTL phase shifter to cover 1.5 GHz - 2.4 GHz range with the whole $360^{\circ}$ phase variation. For the frequency range, a LHTL based frequency translator showed a much better performance whose Spurious Free Dynamic Range (SFDR) is 4dB - 17dB higher than the RHTL based frequency translator when the sawtooth modulation freqncy is 11 kHz. This is due to the linear phase-voltage variation of LHTL phase shifter. Furthermore, the LHTL phase shifter shows a less insertion loss and a insertion loss variation than the RHTL phase shifter. Overall, the LHTL based frequency translator outperformed RHTL based freqency translator.

Nonbinary Convolutional Codes and Modified M-FSK Detectors for Power-Line Communications Channel

  • Ouahada, Khmaies
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.270-279
    • /
    • 2014
  • The Viterbi decoding algorithm, which provides maximum - likelihood decoding, is currently considered the most widely used technique for the decoding of codes having a state description, including the class of linear error-correcting convolutional codes. Two classes of nonbinary convolutional codes are presented. Distance preserving mapping convolutional codes and M-ary convolutional codes are designed, respectively, from the distance-preserving mappings technique and the implementation of the conventional convolutional codes in Galois fields of order higher than two. We also investigated the performance of these codes when combined with a multiple frequency-shift keying (M-FSK) modulation scheme to correct narrowband interference (NBI) in power-line communications channel. Themodification of certain detectors of the M-FSK demodulator to refine the selection and the detection at the decoder is also presented. M-FSK detectors used in our simulations are discussed, and their chosen values are justified. Interesting and promising obtained results have shown a very strong link between the designed codes and the selected detector for M-FSK modulation. An important improvement in gain for certain values of the modified detectors was also observed. The paper also shows that the newly designed codes outperform the conventional convolutional codes in a NBI environment.

Generalized Analysis on the Combined Effect of SPM and Fiber Chromatic Dispersion on Subcarrier Multiplexed Optical Transmission Systems for RoF Applications

  • Kim, Kyoung-Soo;Lee, Jae-Hoon;Jeong, Ji-Chai
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.132-139
    • /
    • 2011
  • We investigate theoretically the combined effect of fiber chromatic dispersion and self-phase modulation (SPM) on multi-channel subcarrier multiplexed (SCM) optical transmission systems in terms of the detected RF carrier power and SPM-induced power gain after transmission over single-mode fiber (SMF) links. According to the calculated power gain due to the SPM effect at the transmission distance of P3dB using the detected radio-frequency (RF) carrier power after photo-detection, the power gain is significantly degraded with large optical modulation index (OMI), small SCM channel spacing, and large fiber launching power because of the increased interaction between subcarrier channels. The nonlinear phase shift due to linear and nonlinear fiber characteristics is investigated to explain these results in detail. The numerical simulation results show that the OMI per SCM channel has to be smaller than 10 % for the fiber launching power of 10 dBm to guarantee prevention of SPM-induced power gain degradation below 0.5 dB for the SCM system with the channel spacing of 100 MHz. This result is expected to be utilized for the optical transmission systems using the SCM technology in future radio-over-fiber (RoF) networks.

Characteristics of Flow Over a Rotationally Oscillating Cylinder (주기적으로 회전하는 원형실린더 주위의 유동특성)

  • Choe, Hae-Cheon;Choe, Seong-Ho;Gang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.4
    • /
    • pp.515-523
    • /
    • 2002
  • Effects of rotary oscillation on unsteady laminar flow past a circular cylinder have been investigated in this study. Numerical simulations are performed for the flow at Re=100 in the range of 0.2<$\Omega$<2.5 and 0.02<$St_f$<0.8, where $\Omega$ and $St_f$ are, respectively, the maximum rotation velocity and rotation frequency normalized by the free-stream velocity and cylinder diameter. Results show that rotary oscillation has significant effects on the flow. When the rotation frequency is near the natural vortex-shedding frequency, lock-on occurs and the lock-on frequency range becomes wider as the rotation velocity increases. In a certain range of the rotation frequency and velocity, modulations in the velocity, lift and drag signals occur and this modulation frequency is expressed as a linear combination of the rotation frequency and vortex-shedding frequency. The mean drag and amplitude of the lift fluctuations show local minima near the boundary between the lock-on non and lock-on regions.

Performance Analysis of the Pre-Whitening Matched Filter in Shallow Water Environment (천해환경에서 선-백색화 정합필터의 성능 분석)

  • Yu, Seog-Kun;Kim, Jeong-Goo;Joo, Eon-Kyeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.152-158
    • /
    • 2008
  • In shallow water environment, the detection performance of an active sonar using matched filter with LFM(linear frequency modulation) pulse can be seriously degraded by reverberation which is considered as non-white noise. To reduce the effect of reverberation, a whitening filter preceding the matched fitter, is usually adopted. In the conventional pre-whitening filter, it is assumed that local stationarity is preserved between detection block and its right ahead block. And then by using the characteristics of the reverberation of preceding block, the reverberation of detection block is estimated and whitened. According to the environment of shallow water, the stationarity of reverberation may be preserved for more blocks. In this case, the reverberation of the detection block can be estimated more accurately if more blocks are used. In this paper, the real reverberation signal which is obtained from shallow sea is analyzed and its proper region of estimation block is examined. And the performance of pre-whitening matched filter is compared and analyzed according to the region of estimation block.

Ocean bottom reverberation and its statistical characteristics in the East Sea (동해 해역에서 해저면 잔향음 및 통계적 특징)

  • Jung, Young-Cheol;Lee, Keun-Hwa;Seong, Woojae;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.82-95
    • /
    • 2019
  • In this study, we analyzed the beam time series of ocean reverberation which was conducted in the eastsouthern region of East Sea, Korea during the August, 2015. The reverberation data was gathered by moving research vessel towing LFM (Linear Frequency Modulation) source and triplet receiver array. After signal processing, we analyzed the variation of ocean reverberation level according to the seafloor bathymetry, source/receiver depth and sound speed profile. In addition, we used the normalized data by using cell averaging algorithm and identified the statistical characteristics of seafloor scatterer by using moment estimation method and estimated shape parameter. Also, we analyzed the coincidence of data with Rayleigh and K-distribution probability by Kolmogorov-Smirnov test. The results show that there is range dependency of reverberation according to the bathymetry and also that the time delay and the intensity level change depend on the depths of source and receiver. In addition, we observed that statistical characteristics of similar Rayleigh probability distribution in the ocean reverberation.