• Title/Summary/Keyword: Linear Flow Model

Search Result 643, Processing Time 0.026 seconds

관류 익형송풍기의 유동장 해석 (Numerical analysis of flow in airfoil type tubular centrifugal fan)

  • 문정주;서성진;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.23-29
    • /
    • 2001
  • Three-dimensional flow through a tubular centrifugal fan with airfoil type blades are analyzed using CFX-TASCflow. Standard k - $\epsilon$ model and k - $\omega$ model are used as turbulence closures. The numerical schemes for convetion terms, i.e., Upwind Differencing Scheme(UDS), Mass Weighted Skewed Upstream Differencing Scheme(MWS), Linear Profile Skewed Upstream Differencing Scheme(LPS), and Modified Linear Profile Skewed Upstream Differencing Scheme(MLPS) are also tested. And, the performance of these schemes coupled with two turbulence models are evaluated. Computational static pressure distributions are compared with experimental data obtained in this work.

  • PDF

준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 수치해석 모델 개발 (Development of a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation of dredged soil-)

  • 곽태훈;윤상봉;안용훈;최은석;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.3-12
    • /
    • 2010
  • Vertical drains have been commonly used to increase the rate of the consolidation of dredged material. The installation of vertical drains additionally provides a radial flow path in the dredged foundation. The objective of this study develops a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the effect of vertical drain in dredged foundation which is in process of self-weight consolidation. The non-linear relationship between the void ratio and effective stress and permeability during consolidation are taken into account in the numerical model. The results of the numerical analysis are compared with that of the self-weight consolidation test in which an artificial vertical drain is installed. In addition, the numerical model developed in this paper is the simplified analytical method proposed by Ahn et, al (2010). The comparisons show that the developed numerical model can properly simulate the consolidation of the dredged material with the vertical drains installed.

  • PDF

Numerical Simulation and Experimental Research of the Flow Coefficient of the Nozzle-Flapper Valve Considering Cavitation

  • Li, Lei;Li, Changchun;Zhang, Hengxuan
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.176-188
    • /
    • 2017
  • The nozzle-flapper valves are widely applied as a pilot stage in aerospace and military system. A subject of the analysis presented in this work is to find out a reasonable range of null clearance between the nozzle and flapper. This paper has presented a numerical flow coefficient simulation. In every design point, a parameterized model is created for flow coefficient simulation and cavitation under different conditions with varying gap width and inlet pressure. Moreover, a new test device has been designed to measure the flow coefficient and for visualized cavitation. The numerical simulation and test results both indicate that cavitation intensity gets fierce initially and shrinks finally as the gap width varies from small to large. From the curve, the flow coefficient mostly has experienced three stages: linear throttle section, transition section and saturation section. The appropriate deflection of flapper is recommended to make the gap width drop into the linear throttle section. The flapper-nozzle null clearance is optionally recommended near the range of $D_N/16$. Finally through simulation it is also concluded that the inlet pressure plays a little role in the influence on the flow coefficient.

DFN 매질에 대한 등가연속체 유동모델의 적용 가능성 평가에 관한 연구 (A Study on Applicability of Equivalent Continuum Flow Model in DFN Media)

  • 이다혜;엄정기
    • 터널과지하공간
    • /
    • 제27권5호
    • /
    • pp.303-311
    • /
    • 2017
  • 본 연구는 다양한 기하학적 속성을 갖는 총 72개의 DFN 블록에 대하여 DFN 유동모델과 등가의 수리상수를 사용한 연속체 모델을 각각 적용하여 두 결과 간의 상관성을 분석하였다. DFN을 연속체로 가정한 이론적 블록수리전도도와 DFN 유동모델로 산정한 블록수리전도도 사이의 상대오차(ER)가 0.2 이하인 DFN 조건에서 두 접근법 사이에 강한 선형 관계를 이루며 두 결과가 거의 일치하는 것으로 평가되었다. DFN 매질에 대한 연속체 유동해석의 현장적용 가능성을 검토하기 위하여 다양한 DFN 조건을 갖는 지중 원형공동에서의 지하수 유입에 대한 모의 수치실험이 총 48회 수행되었다. 일정한 수리간극의 DFN 매질에 대한 등가연속체 유동모델은 유효한 것으로 평가되었지만 수리간극 변화로 인하여 이방성이 증대되면 DFN 유동모델에 의한 결과에 비하여 과대평가될 가능성이 높다.

A numerical solution to fluid-structure interaction of membrane structures under wind action

  • Sun, Fang-Jin;Gu, Ming
    • Wind and Structures
    • /
    • 제19권1호
    • /
    • pp.35-58
    • /
    • 2014
  • A numerical simultaneous solution involving a linear elastic model was applied to study the fluid-structure interaction (FSI) of membrane structures under wind actions, i.e., formulating the fluid-structure system with a single equation system and solving it simultaneously. The linear elastic model was applied to managing the data transfer at the fluid and structure interface. The monolithic equation of the FSI system was formulated by means of variational forms of equations for the fluid, structure and linear elastic model, and was solved by the Newton-Raphson method. Computation procedures of the proposed simultaneous solution are presented. It was applied to computation of flow around an elastic cylinder and a typical FSI problem to verify the validity and accuracy of the method. Then fluid-structure interaction analyses of a saddle membrane structure under wind actions for three typical cases were performed with the method. Wind pressure, wind-induced responses, displacement power spectra, aerodynamic damping and added mass of the membrane structure were computed and analyzed.

Linear Eddy Model을 이용한 스칼라의 혼합특성 해석 (Analysis for Scalar Mixing Characteristics using Linear Eddy Model)

  • 김후중;류연숙;김용모
    • 한국분무공학회지
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 2006
  • The present study is focused on the small scale turbulent mixing processes in the scalar Held. In order to deal with molecular mixing in turbulent flow, the linear eddy model is addressed. In each realization, the molecular mixing term is implemented deterministically, and turbulent stirring is represented by a sequence of instantaneous, statistically independent rearrangement event called by triplet map. The LEM approach is applied with relatively simple conditions. The characteristics of scalar mixing and PDF profiles are addressed in detail.

  • PDF

축대칭엔진 실린더 내의 유동장에 관한 수치해석적 연구 (Numerical Study on Flow Field in the Cylinder of an Axisymmetric Engine)

  • 김영환;유정열;강신형
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.467-474
    • /
    • 1993
  • Viscous flow and heat transfer phenomena in an axisymmetric cylinder which models a diesel engine have been numerically studied. In order to search for a way to minimize numerical diffusion, the effectiveness and the appropriateness of two selected numerical schemes for convective terms in the governing equations have been tested. They are Linear Upwind Difference Scheme and Hybrid Scheme. Using a standard k-.epsilon. turbulence model, the calculation has been carried out basically up to 180.deg. of crank angle. As a result, it was shown from comparison with previous experimental data that Linear Upwind Difference Scheme is less influenced than Hybrid Scheme by the numerical diffusion and it was suggested that these effects of numerical diffusion can be more significant than those due to turbulence modeling.

전향각이 큰 선형터빈 익렬을 통하는 난류유동의 수치해석 (Numerical simulation of turbulent flows through linear turbine cascades with high turning angles)

  • 이훈구;유정열;윤준원
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.3917-3925
    • /
    • 1996
  • A numerical analysis on three dimensional turbulent incompressible flows through linear cascades of turbine rotor blades with high turning angles has been performed by using a generalized k-.epsilon. model which is a high Reynolds number form and derived by RNG(renormalized group) method to account for the variation of the rate of strain. A second order upwind scheme is used to suppress numerical diffusion in approximating the convective terms. Body-fitted coordinates are adopted to represent the complex blade geometry accurately. For the case without tip clearance, velocity vectors and static pressure contours are shown to be in good agreement with previous experimental results. For the case with tip clearance, the effects of the passage vortex and tip clearance flow on the total pressure loss as well as their interactions are discussed.

비선형 Ekman 펌핑 모델의 개발 (Development of a Nonlinear Ekman Pumping Model)

  • 서용권;박재현
    • 대한기계학회논문집B
    • /
    • 제30권6호
    • /
    • pp.568-577
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict the rotating flows more precisely than the classical linear model.