• Title/Summary/Keyword: Linear Features

Search Result 869, Processing Time 0.034 seconds

Evaluation of Frequency Warping Based Features and Spectro-Temporal Features for Speaker Recognition (화자인식을 위한 주파수 워핑 기반 특징 및 주파수-시간 특징 평가)

  • Choi, Young Ho;Ban, Sung Min;Kim, Kyung-Wha;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.7 no.1
    • /
    • pp.3-10
    • /
    • 2015
  • In this paper, different frequency scales in cepstral feature extraction are evaluated for the text-independent speaker recognition. To this end, mel-frequency cepstral coefficients (MFCCs), linear frequency cepstral coefficients (LFCCs), and bilinear warped frequency cepstral coefficients (BWFCCs) are applied to the speaker recognition experiment. In addition, the spectro-temporal features extracted by the cepstral-time matrix (CTM) are examined as an alternative to the delta and delta-delta features. Experiments on the NIST speaker recognition evaluation (SRE) 2004 task are carried out using the Gaussian mixture model-universal background model (GMM-UBM) method and the joint factor analysis (JFA) method, both based on the ALIZE 3.0 toolkit. Experimental results using both the methods show that BWFCC with appropriate warping factor yields better performance than MFCC and LFCC. It is also shown that the feature set including the spectro-temporal information based on the CTM outperforms the conventional feature set including the delta and delta-delta features.

Content-Based Image Retrieval Using Visual Features and Fuzzy Integral (시각 특징과 퍼지 적분을 이용한 내용기반 영상 검색)

  • Song Young-Jun;Kim Nam;Kim Mi-Hye;Kim Dong-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.5
    • /
    • pp.20-28
    • /
    • 2006
  • This paper proposes visual-feature extraction for each band in wavelet domain with both spatial frequency features and multi resolution features, and the combination of visual features using fuzzy integral. In addition, it uses color feature expression method taking advantage of the frequency of the same color after color quantization for reducing quantization error, a disadvantage of the existing color histogram intersection method. Also, it is found that the final similarity can be represented in a linear combination of the respective factors(Homogram, color, energy) when each factor is independent one another. With respect to the combination patterns the fuzzy measurement is defined and the fuzzy integral is taken. Experiments are peformed on a database containing 1,000 color images. The proposed method gives better performance than the conventional method in both objective and subjective performance evaluation.

  • PDF

Damage detection of bridges based on spectral sub-band features and hybrid modeling of PCA and KPCA methods

  • Bisheh, Hossein Babajanian;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.179-200
    • /
    • 2022
  • This paper proposes a data-driven methodology for online early damage identification under changing environmental conditions. The proposed method relies on two data analysis methods: feature-based method and hybrid principal component analysis (PCA) and kernel PCA to separate damage from environmental influences. First, spectral sub-band features, namely, spectral sub-band centroids (SSCs) and log spectral sub-band energies (LSSEs), are proposed as damage-sensitive features to extract damage information from measured structural responses. Second, hybrid modeling by integrating PCA and kernel PCA is performed on the spectral sub-band feature matrix for data normalization to extract both linear and nonlinear features for nonlinear procedure monitoring. After feature normalization, suppressing environmental effects, the control charts (Hotelling T2 and SPE statistics) is implemented to novelty detection and distinguish damage in structures. The hybrid PCA-KPCA technique is compared to KPCA by applying support vector machine (SVM) to evaluate the effectiveness of its performance in detecting damage. The proposed method is verified through numerical and full-scale studies (a Bridge Health Monitoring (BHM) Benchmark Problem and a cable-stayed bridge in China). The results demonstrate that the proposed method can detect the structural damage accurately and reduce false alarms by suppressing the effects and interference of environmental variations.

Development of Correlation Based Feature Selection Method by Predicting the Markov Blanket for Gene Selection Analysis

  • Adi, Made;Yun, Zhen;Keong, Kwoh-Chee
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.183-187
    • /
    • 2005
  • In this paper, we propose a heuristic method to select features using a Two-Phase Markov Blanket-based (TPMB) algorithm. The first phase, filtering phase, of TPMB algorithm works by filtering the obviously redundant features. A non-linear correlation method based on Information theory is used as a metric to measure the redundancy of a feature [1]. In second phase, approximating phase, the Markov Blanket (MB) of a system is estimated by employing the concept of cross entropy to identify the MB. We perform experiments on microarray data and report two popular dataset, AML-ALL [3] and colon tumor [4], in this paper. The experimental results show that the TPMB algorithm can significantly reduce the number of features while maintaining the accuracy of the classifiers.

  • PDF

Unsupervised Feature Selection Method Based on Principal Component Loading Vectors (주성분 분석 로딩 벡터 기반 비지도 변수 선택 기법)

  • Park, Young Joon;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.3
    • /
    • pp.275-282
    • /
    • 2014
  • One of the most widely used methods for dimensionality reduction is principal component analysis (PCA). However, the reduced dimensions from PCA do not provide a clear interpretation with respect to the original features because they are linear combinations of a large number of original features. This interpretation problem can be overcome by feature selection approaches that identifying the best subset of given features. In this study, we propose an unsupervised feature selection method based on the geometrical information of PCA loading vectors. Experimental results from a simulation study demonstrated the efficiency and usefulness of the proposed method.

Homogeneous and Non-homogeneous Polynomial Based Eigenspaces to Extract the Features on Facial Images

  • Muntasa, Arif
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.591-611
    • /
    • 2016
  • High dimensional space is the biggest problem when classification process is carried out, because it takes longer time for computation, so that the costs involved are also expensive. In this research, the facial space generated from homogeneous and non-homogeneous polynomial was proposed to extract the facial image features. The homogeneous and non-homogeneous polynomial-based eigenspaces are the second opinion of the feature extraction of an appearance method to solve non-linear features. The kernel trick has been used to complete the matrix computation on the homogeneous and non-homogeneous polynomial. The weight and projection of the new feature space of the proposed method have been evaluated by using the three face image databases, i.e., the YALE, the ORL, and the UoB. The experimental results have produced the highest recognition rate 94.44%, 97.5%, and 94% for the YALE, ORL, and UoB, respectively. The results explain that the proposed method has produced the higher recognition than the other methods, such as the Eigenface, Fisherface, Laplacianfaces, and O-Laplacianfaces.

A Study on the Visible Speech Processing System for the Hearing Impaired (청각 장애자를 위한 시각 음성 처리 시스템에 관한 연구)

  • Kim, Won-Ky;Kim, Nam-Hyun;Yoo, Sun-Kook;Jung, Sung-Hun
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.57-61
    • /
    • 1990
  • The purpose of this study is to help the hearing impaired's speech training with a visible speech processing system. In brief, this system converts the features of speech signals into graphics on monitor, and adjusts the features of hearing impaired to normal ones. There are form ant and pitch in the features used for this system. They are extracted using the digital signal processing such as linear prediotive method or AMDF(Average Magnitude Difference Function). In order to effectively train for the hearing impaired's abnormal speech, easilly visible feature has been being studied.

  • PDF

Feature selection in the semivarying coefficient LS-SVR

  • Hwang, Changha;Shim, Jooyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.461-471
    • /
    • 2017
  • In this paper we propose a feature selection method identifying important features in the semivarying coefficient model. One important issue in semivarying coefficient model is how to estimate the parametric and nonparametric components. Another issue is how to identify important features in the varying and the constant effects. We propose a feature selection method able to address this issue using generalized cross validation functions of the varying coefficient least squares support vector regression (LS-SVR) and the linear LS-SVR. Numerical studies indicate that the proposed method is quite effective in identifying important features in the varying and the constant effects in the semivarying coefficient model.

Study of the Tidal Channels Appeared on SAR Images

  • Kim, Tae-Rim;Park, Jong-Jib;Choi, Byoung-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.501-505
    • /
    • 2009
  • Quasi-linear bright features persistently appeared on ENVISAT ASAR images as well as X-SAR images along the tidal channels in Gyung-Gi Bay, Korea during the ebb tides. These features are induced by spatial backscatter variations caused by surface convergence (divergence) through the interaction between tidal currents and bathymetry. In order to validate this mechanism, a numerical tidal model simulation is performed on the realistic bathymetry with the tidal boundary conditions. The tide model reproduces the current convergence zone along the tidal channel during the ebb tides, which exactly coincides with the location of bright line features on SAR images.

Action Recognition with deep network features and dimension reduction

  • Li, Lijun;Dai, Shuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.832-854
    • /
    • 2019
  • Action recognition has been studied in computer vision field for years. We present an effective approach to recognize actions using a dimension reduction method, which is applied as a crucial step to reduce the dimensionality of feature descriptors after extracting features. We propose to use sparse matrix and randomized kd-tree to modify it and then propose modified Local Fisher Discriminant Analysis (mLFDA) method which greatly reduces the required memory and accelerate the standard Local Fisher Discriminant Analysis. For feature encoding, we propose a useful encoding method called mix encoding which combines Fisher vector encoding and locality-constrained linear coding to get the final video representations. In order to add more meaningful features to the process of action recognition, the convolutional neural network is utilized and combined with mix encoding to produce the deep network feature. Experimental results show that our algorithm is a competitive method on KTH dataset, HMDB51 dataset and UCF101 dataset when combining all these methods.