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ABSTRACT: In this paper, we propose a heuristic method
to select features using a Two-Phase Markov Blanket-based
(TPMB) algorithm. The first phase, filtering phase, of
TPMB algorithm works by filtering the obviously redundant
features. A non-linear correlation method based on
Information theory is used as a metric to measure the
redundancy of a feature [1]. In second phase, approximating
phase, the Markov Blanket (MB) of a system is estimated
by employing the concept of cross entropy to identify the
MB. We perform experiments on microarray data and report
two popular dataset, AML-ALL [3] and colon tumor [4], in
this paper. The experimental results show that the TPMB
algorithm can significantly reduce the number of features
while maintaining the accuracy of the classifiers.

1. INTRODUCTION

Data classification problem is described as a problem where
there is a dataset (a collection of data instances) and a
classifier. Each instance of data contains the same number
of features which can be small or large and each data
instances is labeled with a class. Generally, data instances
are obtained from experiments. Then, the dataset is fed into
the classifier which a classification model based on the
provided data will be created. This process is called
classifier learning phase. Eventually, when we have a data
instance which we do not know the class yet, we can input
unclassified data instance into the classification model and
let the model decide what class this data instance belongs.
Figure 1 illustrates the data classification process.
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Figure 1: Data Classification Process

In most cases of data classification, a data instance from
a dataset will contain a large number of features which most
of them are redundant for the classifier learning phase.
These redundant features will not help a classifier algorithm
to build a good classification model during its training
phase. On the contrary, the redundant features may
deteriorate the performance of the classifier in terms of,

firstly, model accuracy, as redundant data might provide
spurious information during classifier’s learning phase; and
secondly, time taken during learning phase, as there are
large number of inputs to be processed

These issues, then, can be addressed as the curse of
dimensionality which refers to the exponential growth of
hypervolume as a function of dimensionality. Feature
selection algorithm is designed to select a relatively small
number of features to represent the whole dataset and the
classifier can use the selected features for learning process.
The performance of feature selection algorithm is usually
measured by the number of features it selects, accuracy of
the classification model trained using selected features and
time needed to do selection.

2. INFORMATION THEORY
MARKOV BLANKET

AND

2.1 Entropy

Information theory was first introduced by Claude E.
Shannon in 1948. He introduced the concept of entropy
which is a measure of uncertainty of a random variable.
Given X which is a discrete random variable with alphabet
X and probability mass function p(x)=Pr{X =x},xeX

Thus, the entropy, H(X), of a discrete random variable X is
defined as:
H(X)=-)_ p(x)log p(x)

xeX

2.2 Conditional Entropy

When there are two random variables X and Y, we can
consider them to be a single vector-valued random variable
(X Y). The joint entropy H(X, Y) of a pair of discrete random
variables (X, Y¥) with a joint distribution p(x, y) is defined as
HX,1)==)_" p(x,)log p(x,y)
xEX yeY
The conditional entropy of a random variable is defined as,
given another random variable as the expected value of the
entropies of the conditional distributions, averaged over the
conditioning random variable.
If distribution of (XY) ~ p(x,y) then the conditional
entropy H(Y|X) is defined as
H(Y|X)=) p(X)H(Y|X =x)

xeX

2.3 Relative Entropy

The relative entropy is a measure of the distance between two
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distributions. In statistics, it arises as an expected logarithm
of the likelihood. The relative entropy D(p||q) is a measure of
the inefficiency of assuming that the distribution is ¢ when
the true distribution is p.

The relative entropy or Kullback Leibler Distance
between two probability mass function p(x) and q(x) is
defined as

D(pllg)=3 px)log ”(‘ )
xexX
Entropy is always non-negative and is zero if and only if
p=q. However it is not a true distance between distributions
since it is not symmetric and does not satisfy the triangle
inequality. Nonetheless, it is often useful to think of relative
entropy as a “distance” between distributions.

2.4 Mutual Information

We use entropy to measure how random a system is. When
there are two random variables (X and Y) which are parts of
random systems, the prior knowledge of one random variable
will reduce the entropy of another system or keep the entropy
of another system the same. The amount of entropy removed
upon knowing the occurrence of another random variable is
called the mutual information.

Mutual information, I(X;Y), is defined as the reduction in
the uncertainty of X due to the knowledge of Y or vice versa
as:

I(X;Y)=HX)-HX|Y)=HX)-H{ | X)

Mutual information definition in aboved equation is
actually the derivation of relative entropy between the joint
distribution and the product distribution defined below:

IX;Y) = D(P(x, ) || P(X)P(y))

P(x,y)
= P(x.
ZZ SISy
P(x]y)
=) P(x,y)lo
Z (s )log = 5=

= —Z P(x,y)log P(x)+ Y P(x,y)log P(x| y)

xy *y

=H(X)-H(X|Y)

The relationship between mutual information and entropy
can be seen on Figure 2.

HXY)

F y

HX) H)
Figure 2: Relationship between Mutual Information and
Entropy
2.5 Markov Blanket

Koller and Sahami [2] discussed the concept of conditional

independence between features. Two variables (e.g, T and X)
are said to be conditionally independent given some set of
variables Z if, for any assignment of values, ¢, z, and x to the
variables T, Z, and X respectively,
isP(T=t|X=x,Z=2z)=P(T =t|Z=z). That is, X gives
us no information about T beyond what is already in Z. Thus,
we can calculate that D(P(T'| X,Z)|| P(T | Z2))=0. If this is

related with mutual information concept, the mutual
information between T and X given Z is:
IT;X|2)=H(T|Z)-H(T| X,Z)
—ZP(TlZ)logP(TIZ)+ > P(T|X,Z)logP(T| X,Z)
—ZP(T | Z)log P(T | Z)+ ZP(T | 2)log P(T'| Z)
=0
The Markov blanket of a variable of interest T, denoted as

MB(T), is the minimum conditioning set that makes all other
features independent for T [6]. Given this property,
knowledge of only the features of the MB(T) is enough to
determine the probability distribution of T and the values of
all other features become unnecessary. Therefore, the
variables in the MB(T) are adequate for optimal classification.
Then, the Markov blanket of a variable interest T, MB(T) can
be represented as a minimal set for which
I(X;TI\MB(T)=0,VXe{yV/ -T-MB(T)}.

3. TPMB ALGORITHM

The algorithm to select the minimum set of features that
represents the Markov blanket of the target class is NP hard.
To cope with this scalability problem, we propose the
TPMB algorithm which is a heuristic algorithm to select
features based on Markov blanket concept. This algorithm
consists of two phases, filtering and approximating.

3.1 Filtering Phase

The scalability problem occurs because there are too many
features to handle. Thus, in this phase we climinate the
features that do not posses an “obvious” relation with the
target class. There are many ways to go about eliminating
redundant features. One of the ways is to measure the
correlation of each feature. In this chapter we are going to
discuss about how we can filter redundant features by
measuring the correlation between each feature and the
target class.

3.1.1 Linear Correlation

Suppose we have two variables X and Y, with means X
and X respectively and standard deviations Sx and Sy

respectively, linear correlation (also known as Pearson’s
Correlation) is computed as:

> - B

i=1

r (n—1)S=S,

The meaning of linear correlation (Pearsonk
Correlation) can be described in this way. Suppose that an X’
value is above average, and that the associated Y value was
also above average. Then the product
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(X,-—/\_’)(Yi—f ) would be the product of two positive

numbers which would be positive. The result will also be
positive if the X value and the Y value are both below
average. Therefore, a positive linear correlation is evidence
of a general tendency that large values of X are associated
with large values of Y and small values of X are associated
with small values of Y. On the other hand, a negative linear
correlation is evidence of a general tendency that large
values of X are associated with small values of Y and small
values of X are associated with large values of Y. A
correlation of O means there is no linear relationship
between two variables. The correlation coefficient is always
between -1 and +1. The closer the correlation is to +1/-1, the
closer the variables to a perfect linear relationship.

3.1.2 Non Linear Correlation

Linear correlation measures may not be able to capture
correlations that are not linear in nature. To overcome this
shortcoming, a correlation measure based on the
information-theoretical concept of entropy is adopted.

Suppose that there are two variables X with entropy H(X)
and Y with entropy H(Y). The mutual information between
two variables is denoted as I(X,Y). The non-linear
correlation or symmetrical uncertainty (SU) between two
variables is defined as follows {5].

_ 1(X;Y)
SU(X’Y)_Z[H(XHH(Y)}

Information gain I(X;Y) is bias towards features with

more values, therefore it is normalized such that
symmetrical uncertainty is within range [0,1]. Value 1
indicates that the knowledge of the value of either X or Y
can completely predicts the value of the other variable and
value 0 indicates that X and Y are independent [9].

3.1.3 Filtering Algorithm

Despite several benefits of choosing linear correlation as a
feature goodness measure for classification, it is not safe to
always assume linear correlation between features in the
real world [5]. Therefore, in our approach of filtering
redundant data we use non-linear approach using
symmetrical uncertainty.

The filtering algorithm that we use is Simple-Comparison
(SC) filtering (Figure 3). In this method, we measure the
correlation between each feature and the target class. We
also define a threshold value ( &/ ) and select features which

non-linear correlation to the target class is more than the
threshold.

Input:  S(f, £, fn,C) //atraining dataset
&f //a predefined threshold

Output: S, //a filtered subset

1  begin

2 for i =1 to N do begin

3 Calculate SU;,. for f;

4 if(SU;.2¢7)

5 append f;toS';,;

6 end for;

T Sp=Sis;

8 end;

Figure 3: Simple Comparison Filtering Algorithm

3.2 Approximating Phase

After the filtering phase, the MB candidate list is further
processed to approximate the Markov blanket. In
approximating Markov blanket, our algorithm uses the

concept of cross entropy, (P, ||R)=D(P,||B)>F, is

the probability of target class given all features and
B, is the probability of target class when one feature is

removed.

Let us assume F={f,.,f,} » F,=P(C|F) and
B =P(C|F-f).If 0(Z||B)=0 then we can say that
C is conditionally independent of f; and we can

remove f; from F. However, sometimes it is difficult to find

such a feature that is conditionally independent to the target
class given the knowledge of other features. For that reason,
in our approximating algorithm (Figure 4), we introduce a
predefined threshold, ¢, , such that we remove f; if

AP, |B)<s,.

Input:  S(A, /2,5 f5>C) // training dataset
SUpt (SUy 458Uy ) /[ correlation
&q // predefined threshold

Output: MB;, / /Estimated Markov blanket

1 Dbegin

2 Order § indecreasing order of S values;
3 MB,, =NULL;

4 for (i=N; i>=2; i--) do begin

5 F,=P(C|{S});

6 B =P(C{S}-1);:

7 If (6(R, || ) < g, )then

8 Remove f;fromS;

9 End if;
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10 End for;

11 MB,,= §-C, [/training dataset minus Class
12 Return MB,;

13 end;

Figure 4: Approximation Algorithm

3.3 Complexity of TPMB Algorithm

Suppose that the original dataset contains » data instances
and m features. In the filtering phase of algorithm, if SC
filtering algorithm is used, the filtering phase algorithmic
complexity will be O(mzn). In the approximating phase,

assume that the number of selected features passed from the
filtering phase is p, the algorithmic complexity of

approximation phase is O( pzn) . It is clear that if we can

reduce a large number features in first phase then we can
have a lower algorithmic complexity in second phase.

4. RESULTS

We conducted our experiments using the microarray gene
expression datasets AMLALL from Golub et al {3] and
colon tumor from Alon et al [4]. The AMLALL dataset
contains 38 samples and 7129 genes while colon tumor
dataset 62 samples and 2000 genes.

We perform 10-fold Cross Validation test on the original
dataset. After that, we run TPMB algorithm with different
combination of £,and¢,. Next, we list down the highest

ranked genes of AMLALL and Leukemia dataset based on
TPMB algorithm as shown in table 1 and table 2.

Gene
AML-ALL ) e csion Description
Features
No
4847 X95735_at  Zyxin
CHRNA7
Cholinergic
4499 X70297 at P
- receptor, nicotinic,
alpha polypeptide 7
NUCLEOLYSIN
2233 M77142_at TIA-1
PTX3
Pentaxin-related
1926 M31166_at  gene, rapidly
induced by IL-1
beta
Table 1: Top ranked features of AMLALL dataset which are
selected by TPMB algorithm
Colon Gene .
Tumor No Seq Gene Description
Features )

Human
monocyte-derived
neutrophil-activating

1671 M26383 gene

gene Human
monocyte-derived

3 GTP-BINDING
1293 H23544 UTR NUCLEAR PROTEIN
RAN (Homo sapiens)
MYOSIN HEAVY
3 CHAIN,
493 R87126 TR  NONMUSCLE (Gallus
gallus)
MITOCHONDRIAL
MATRIX PROTEIN
513 M22382 gene P1 PRECURSOR
(HUMAN)
Table 2: Top ranked features of Colon Tumor dataset
selected by TPMB algorithm

As the classifiers, in our experiment we used C4.5 and
Least Square Support Vector Machine [7]. Table 3 shows
the accuracies of the classifiers trained using dataset with
full number of features and with selected number of features
presented in Table 1 and Table 2.

As shown in table 3, TPMB algorithm is able to reduce
the number of features significantly for both AMLALL and
Colon Tumor dataset. In most cases feature reduction leads
to higher accuracy except for AMLALL dataset, when
LSSVM is used, there is a decrease in accuracy. However,
the accuracy is still high and the decrease is not significant.
Compared to the ability of TPMB algorithm to reduce the
number of features, the gain out-weights the slight drop in
performance.

ORIGINAL TPMB ALGORITHM
Data LSSV LSSV
a M M
#feat with C4.5 fifeatu with C4.
ures . res . 5
linear linear
kernel kemel
AMLA 84.2 89.
LL 7129 96.67 1 4 93.33 47
Colon 82.2 82.
Tumor 2000 78 6 4 80 26

Table 3: Classifiers accuracy when trained with full set
features and with features selected by TPMB algorithm full
number of features and with selected number of features

5. CONLUSIONS

From the results of the TPMB algorithm, top ranked
features have been selected. The ratios between selected and
original features are very significant, i.e. 4:7129 and 4:2000.
It has been shown that classifiers trained using the selected
features can produce rather good prediction accuracy.

The combination of the thresholds affects timing
performance and the number of selected features. The
perfect combination that gives the best performance can be
found by multiple experiments. Further improvements can
be done to TPMB algorithm especially about how to adjust

- 186 -



the thresholds in first and second phases theoretically than
heuristically.
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