• Title/Summary/Keyword: Linear Features

Search Result 869, Processing Time 0.026 seconds

Effective Combination of Temporal Information and Linear Transformation of Feature Vector in Speaker Verification (화자확인에서 특징벡터의 순시 정보와 선형 변환의 효과적인 적용)

  • Seo, Chang-Woo;Zhao, Mei-Hua;Lim, Young-Hwan;Jeon, Sung-Chae
    • Phonetics and Speech Sciences
    • /
    • v.1 no.4
    • /
    • pp.127-132
    • /
    • 2009
  • The feature vectors which are used in conventional speaker recognition (SR) systems may have many correlations between their neighbors. To improve the performance of the SR, many researchers adopted linear transformation method like principal component analysis (PCA). In general, the linear transformation of the feature vectors is based on concatenated form of the static features and their dynamic features. However, the linear transformation which based on both the static features and their dynamic features is more complex than that based on the static features alone due to the high order of the features. To overcome these problems, we propose an efficient method that applies linear transformation and temporal information of the features to reduce complexity and improve the performance in speaker verification (SV). The proposed method first performs a linear transformation by PCA coefficients. The delta parameters for temporal information are then obtained from the transformed features. The proposed method only requires 1/4 in the size of the covariance matrix compared with adding the static and their dynamic features for PCA coefficients. Also, the delta parameters are extracted from the linearly transformed features after the reduction of dimension in the static features. Compared with the PCA and conventional methods in terms of equal error rate (EER) in SV, the proposed method shows better performance while requiring less storage space and complexity.

  • PDF

REGISTRATION OF IKONOS-2 GEO-LEVEL SATELLITE IMAGERY USING ALS DATA;BY USING LINEAR FEATURES AS REGISTRATION PRIMITIVES

  • Lee, Jae-Bin;Song, Woo-Seok;Lee, Chang-No;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.14-17
    • /
    • 2007
  • To make use of surveying data obtained from different sensors and different techniques in a common reference frame, it is a pre-requite step to register them in a common coordinate system. For this purpose, we have developed a methodology to register IKONOS-2 Satellite Imagery using ALS data. To achieve this, conjugate features from these data should be extracted in advance. In the study, linear features are chosen as conjugate features because they can be accurately extracted from man-made structures in urban area, and more easily than point features from ALS data. Then, observation equations are established from similarity measurements of the extracted features. During the process, considering the characteristics of systematic errors in IKONOS-2 satellite imagery, the transformation function were selected and used. In addition, we also analyzed how the number of linear features and their spatial distribution used as control features affect the accuracy of registration. Finally, the results were evaluated statistically and the results clearly demonstrated that the proposed algorithms are appropriate to register these data.

  • PDF

Aerial Triangulation with 3D Linear Features and Arc-Length Parameterization

  • Lee, Won-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.115-120
    • /
    • 2009
  • Point-based methods with experienced human operators are processed well in traditional photogrammetric activities but not the autonomous environment of digital photogrammetry. To develop more robust and accurate techniques, higher level objects of straight linear features accommodating element other than points are adopted instead of points in aerial triangulation. Even though recent advanced algorithms provide accurate and reliable linear feature extraction, extracting linear features is more difficult than extracting a discrete set of points which can consist of any form of curves. Control points which are the initial input data and break points which are end points of piecewise curves are easily obtained with manual digitizing, edge operators or interest operators. Employing high level features increase the feasibility of geometric information and provide the analytical and suitable solution for the advanced computer technology.

  • PDF

Linear Feature Simplification Using Wavelets in GIS

  • Liang, Chen;Lee, Chung-Ho;Kim, Jae-Hong;Bae, Hae-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.151-153
    • /
    • 2001
  • Feature Simplification is an essential method for multiple representations of spatial features in GIS. However, spatial features re various, complex and a alrge size. Among spatial features which describe spatial information. linear feature is the msot common. Therefore, an efficient linear feature simplification method is most critical for spatial feature simplification in GIS. This paper propose an original method, by which the problem of linear feature simplification is mapped into the signal processing field. This method avoids conventional geometric computing in existing methods and exploits the advantageous properties of wavelet transform. Experimental results are presented to show that the proposed method outperforms the existing methods and achieves the time complexity of O(n), where n is the number of points of a linear feature. Furthermore, this method is not bound to two-dimension but can be extended to high-dimension space.

  • PDF

The horizontal line detection method using Haar-like features and linear regression in infrared images

  • Park, Byoung Sun;Kim, Jae Hyup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.29-36
    • /
    • 2015
  • In this paper, we propose the horizontal line detection using the Haar-like features and linear regression in infrared images. In the marine environment horizon image is very useful information on a variety of systems. In the proposed method Haar-like features it was noted that the standard deviation be calculated in real time on a static area. Based on the pixel position, calculating the standard deviation of the around area in real time and, if the reaction is to filter out the largest pixel can get the energy map of the area containing the straight horizontal line. In order to select a horizontal line of pixels from the energy map, we applied the linear regression, calculating a linear fit to the transverse horizontal line across the image to select the candidate optimal horizontal. The proposed method was carried out in a horizontal line detecting real infrared image experiment for day and night, it was confirmed the excellent detection results than the legacy methods.

A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition (실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구)

  • Chu, Jun-Uk;Kim, Shin-Ki;Mun, Mu-Seong;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

Registration of Three-Dimensional Point Clouds Based on Quaternions Using Linear Features (선형을 이용한 쿼터니언 기반의 3차원 점군 데이터 등록)

  • Kim, Eui Myoung;Seo, Hong Deok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • Three-dimensional registration is a process of matching data with or without a coordinate system to a reference coordinate system, which is used in various fields such as the absolute orientation of photogrammetry and data combining for producing precise road maps. Three-dimensional registration is divided into a method using points and a method using linear features. In the case of using points, it is difficult to find the same conjugate point when having different spatial resolutions. On the other hand, the use of linear feature has the advantage that the three-dimensional registration is possible by using not only the case where the spatial resolution is different but also the conjugate linear feature that is not the same starting point and ending point in point cloud type data. In this study, we proposed a method to determine the scale and the three-dimensional translation after determining the three-dimensional rotation angle between two data using quaternion to perform three-dimensional registration using linear features. For the verification of the proposed method, three-dimensional registration was performed using the linear features constructed an indoor and the linear features acquired through the terrestrial mobile mapping system in an outdoor environment. The experimental results showed that the mean square root error was 0.001054m and 0.000936m, respectively, when the scale was fixed and if not fixed, using indoor data. The results of the three-dimensional transformation in the 500m section using outdoor data showed that the mean square root error was 0.09412m when the six linear features were used, and the accuracy for producing precision maps was satisfied. In addition, in the experiment where the number of linear features was changed, it was found that nine linear features were sufficient for high-precision 3D transformation through almost no change in the root mean square error even when nine linear features or more linear features were used.

Linear Feature Extraction from Satellite Imagery using Discontinuity-Based Segmentation Algorithm

  • Niaraki, Abolghasem Sadeghi;Kim, Kye-Hyun;Shojaei, Asghar
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.643-646
    • /
    • 2006
  • This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.

  • PDF

Registration between High-resolution Optical and SAR Images Using linear Features (선형정보를 이용한 고해상도 광학영상과 SAR 영상 간 기하보정)

  • Han, You-Kyung;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.141-150
    • /
    • 2011
  • Precise image-to-image registration is required to process multi-sensor data together. The purpose of this paper is to develop an algorithm that register between high-resolution optical and SAR images using linear features. As a pre-processing step, initial alignment was fulfilled using manually selected tie points to remove any dislocations caused by scale difference, rotation, and translation of images. Canny edge operator was applied to both images to extract linear features. These features were used to design a cost function that finds matching points based on their similarity. Outliers having larger geometric differences than general matching points were eliminated. The remaining points were used to construct a new transformation model, which was combined the piecewise linear function with the global affine transformation, and applied to increase the accuracy of geometric correction.

A Study on the Cartographic Generalization of Stream Networks by Rule-based Modelling (규칙기반 모델링에 의한 하계망 일반화에 관한 연구)

  • Kim Nam-Shin
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.4
    • /
    • pp.633-642
    • /
    • 2004
  • This study tries to generalize the stream network by constructing rule-based modelling. A study on the map generalization tends to be concentrated on development of algorithms for modification of linear features and evaluations to the limited cartographic elements. Rule-based modelling can help to improve previous algorithms by application of generalization process with the results that analyzing mapping principles and spatial distribution patterns of geographical phenomena. Rule-based modelling can be applied to generalize various cartographic elements, and make an effective on multi-scaling mapping in the digital environments. In this research, nile-based modelling for stream network is composed of generalization rule, algorithm for centerline extraction and linear features. Before generalization, drainage pattern was analyzed by the connectivity with lake to minimize logical errors. As a result, 17 streams with centerline are extracted from 108 double-lined streams. Total length of stream networks is reduced as 17% in 1:25,000 scale, and as 29% in 1:50,000. Simoo algorithm, which is developed to generalize linear features, is compared to Douglas-Peucker(D-P) algorithm. D-P made linear features rough due to the increase of data point distance and widening of external angle. But in Simoo, linear features are smoothed with the decrease of scale.