• Title/Summary/Keyword: Linear Cyclic System

Search Result 62, Processing Time 0.026 seconds

Antibiotics Assay of Doxycycline in Food System using Stripping Voltammetry

  • Ly, Suw Young;Lee, Chang Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.726-733
    • /
    • 2016
  • A voltammetric analysis of doxycycline was developed using DNA immobilized onto a carbon nanotube paste electrode (PE). An anodic peak current was indicated at 0.2 V (versus Ag/AgCl) in a 0.1M $NH_4H_2PO_4$ electrolyte solution. The linear working range of the cyclic and square wave stripping voltammetry was obtained to $1-27ngL^{-1}$ with an accumulation time of 800 s. Final analytical parameters were optimized to be as follows: amplitude, 0.35 V; frequency, 500 Hz; and pH, 5.43. Here detection limit was found to be $0.45ngL^{-1}$, this result can be applied in foods systems and in the biological diagnostics

The performance evaluation of Stirling cryocooler for thermal imaging system (III) : Thermal environmental test (열상장비용 스터링 극저온 냉동기 특성평가 (III) : 열환경시험)

  • 김양훈;박성제;홍용주;김효봉;고득용;이승홍;나종문
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.163-166
    • /
    • 2003
  • This paper presents the results of a series of performance tests for the Stilting cryocooler. Infrared sensor systems incorporating cryocoolers are required to be qualified to the appropriate environmental specification. Linear drive Stilting cryocooler have matured to the stage of undergoing formal qualification test program The thermal environmental test of the Stilting cryocooler is presented in this paper. We performed that low and high temperature keeping test from -4$0^{\circ}C$ to +6$0^{\circ}C$ and operating test at high and low temperature cyclic range with acceptance tests performed at scheduled intervals. Cooling capacity was determined as a function of cooler components temperatures at the compressor, hot end and cold tip. Tests performed on this cooler have been successful with a measured cooling performance of more than 0.8W@80K for 23$^{\circ}C$ ambient temperature with 40 $W_{ac}$ input power.

  • PDF

Electrochemical Detection of Single Nucleotide Polymorphism (SNP) Using Microelectrode Array on a DNA Chip (미소전극어레이형 DNA칩을 이용한 유전자다형의 전기화학적 검출)

  • 최용성;권영수;박대희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.286-292
    • /
    • 2004
  • In this study, an integrated microelectrode array was fabricated on glass slide using microfabrication technology. Probe DNAs consisting of mercaptohexyl moiety at their 5-end were spotted on the gold electrode using micropipette or DNA arrayer utilizing the affinity between gold and sulfur. Cyclic voltammetry in 5mM ferricyanide/ferrocyanide solution at 100 ㎷/s confirmed the immobilization of probe DNA on the gold electrodes. When several DNAs were detected electrochemically, there was a difference between target DNA and control DNA in the anodic peak current values. It was derived from specific binding of Hoechst 33258 to the double stranded DNA due to hybridization of target DNA. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic System.

Determination of Derivatives of Phenol with a Modified Electrode Containing β-Cyclodextrin

  • 김신희;원미숙;심윤보
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.342-347
    • /
    • 1996
  • Voltammetric determination of phenol derivatives, such as phenol, o-, m-, and p-cresols was studied with a β-Cyclodextrin (β-CD) modified-carbon paste electrode composing of the graphite powder and Nujol oil. Phenol derivatives were chemically deposited via the complex formation with β-CD by immersing the CME into a sample solution. The resulting surfaces were characterized with cyclic and differential pulse voltammetry. Treating the CME with 1 M nitric acid for five sec after a measurement could regenerate the electrode surface. Linear sweep and differential pulse voltammograms were recorded for the above system to optimize the experimental parameters for analysing the phenol derivatives. In this case, the detection limit for phenols was 5.0×10-7M for 25 min of the deposition time with differential pulse voltammetry. The relative standard deviation was ±5.2% of 3.0×10-6M (four repetitions). The interference effect of the following organic compounds was also investigated; Bezoic acid, hippuric acid, o-, m-, and p-methylhippuric acid. Adding the organic compounds into the sample solution reduces the peak current of the phenols to about 25%.

Three dimensional dynamic soil interaction analysis in time domain through the soft computing

  • Han, Bin;Sun, J.B.;Heidarzadeh, Milad;Jam, M.M. Nemati;Benjeddou, O.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.761-773
    • /
    • 2021
  • This study presents a 3D non-linear finite element (FE) assessment of dynamic soil-structure interaction (SSI). The numerical investigation has been performed on the time domain through a Finite Element (FE) system, while considering the nonlinear behavior of soil and the multi-directional nature of genuine seismic events. Later, the FE outcomes are analyzed to the recorded in-situ free-field and structural movements, emphasizing the numerical model's great result in duplicating the observed response. In this work, the soil response is simulated using an isotropic hardening elastic-plastic hysteretic model utilizing HSsmall. It is feasible to define the non-linear cycle response from small to large strain amplitudes through this model as well as for the shift in beginning stiffness with depth that happens during cyclic loading. One of the most difficult and unexpected tasks in resolving soil-structure interaction concerns is picking an appropriate ground motion predicted across an earthquake or assessing the geometrical abnormalities in the soil waves. Furthermore, an artificial neural network (ANN) has been utilized to properly forecast the non-linear behavior of soil and its multi-directional character, which demonstrated the accuracy of the ANN based on the RMSE and R2 values. The total result of this research demonstrates that complicated dynamic soil-structure interaction processes may be addressed directly by passing the significant simplifications of well-established substructure techniques.

Investigating the Subsea Sandwich Pipeline Integrity under Complex Loadings (선형 매칭 기법을 활용한 해저 샌드위치 파이프의 복합하중 영향도 분석)

  • Geo-Rak Park;Kyu Song;Youngjae Choi;Nak-Kyun Cho;Chung-Soo Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • Subsea pipelines are widely used to transport hydrocarbons from ultra-deep seawater to facilities on the coast. A sandwich pipe is a pipe-in-pipe system in which the annulus between the two concentric steel pipes is filled with polymer cores and fillers for insulation and structural reinforcement. Sandwich pipeline is always exposed to complex loading such as bending moment, bulking, internal and external pressures caused by installation, operation and environmental factors. This research provides insights into the structural integrity of sandwich pipeline exposed to complex loading conditions using a linear matching method (LMM). The finite element model of the sandwich pipeline has been generated from previous research, and the model validation is performed by comparing the results of the linear analysis between the two models. The temperature dependent material properties are used to simulate the behavior of real pipeline, and the elastic-perfectly plastic (EPP) model has been taken into account for the material non-linearity. Numerical results provide comprehensive insights into the structural response of the sandwich pipeline under monotonic and cyclic loading and provide notable points about the evaluation of the plastic collapse limit and the elastic shakedown limit of the sandwich pipeline.

Damage Count Method Using Acceleration Response for Vibration Test Over Multi-spectral Loading Pattern (복합 스펙트럼 패턴의 진동 시험을 위한 가속도 응답 데이터 기반의 피로 손상도 계산 방법)

  • Kim, Chan-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.739-746
    • /
    • 2015
  • Several damage counting methods can be applied for the fatigue issues of a ground vehicle system using strain data and acceleration data is partially used for a high cyclic loading case. For a vibration test, acceleration data is, however, more useful than strain one owing to the good nature of signal-to-random ratio at acceleration response. The test severity can be judged by the fatigue damage and the pseudo-damage from the acceleration response stated in ISO-16750-3 is one of sound solutions for the vibration test. The comparison of fatigue damages, derived from both acceleration and strain, are analyzed in this study to determine the best choice of fatigue damage over multi-spectral input pattern. Uniaxial excitation test was conducted for a notched simple specimen and response data, both acceleration and strain, are used for the comparison of fatigue damages.

Enrichment of Electrochemically Active Bacteria Using a Three-Electrode Electrochemical Cell

  • Yoon, Seok-Min;Choi, Chang-Ho;Kim, Mi-A;Hyun, Moon-Sik;Shin, Sung-Hye;Yi, Dong-Heui;Kim, Hyung-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.110-115
    • /
    • 2007
  • Electrochemically active bacteria were successfully enriched in an electrochemical cell using a positively poised working electrode. The positively poised working electrode (+0.7 V vs. Ag/AgCl) was used as an electron acceptor for enrichment and growth of electrochemically active bacteria. When activated sludge and synthetic wastewater were fed to the electrochemical cell, a gradual increase in amperometric current was observed. After a period of time in which the amperometric current was stabilized (generally 8 days), linear correlations between the amperometric signals from the electrochemical cell and added BOD (biochemical oxygen demand) concentrations were established. Cyclic voltammetry of the enriched electrode also showed prominent electrochemical activity. When the enriched electrodes were examined with electron microscopy and confocal scanning laser microscopy, a biofilm on the enriched electrode surface and bacterium-like particles were observed. These experimental results indicate that the electrochemical system in this study is a useful tool for the enrichment of an electrochemically active bacterial consortium and could be used as a novel microbial biosensor.

Neuro-fuzzy based prediction of the durability of self-consolidating concrete to various sodium sulfate exposure regimes

  • Bassuoni, M.T.;Nehdi, M.L.
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.573-597
    • /
    • 2008
  • Among artificial intelligence-based computational techniques, adaptive neuro-fuzzy inference systems (ANFIS) are particularly suitable for modelling complex systems with known input-output data sets. Such systems can be efficient in modelling non-linear, complex and ambiguous behaviour of cement-based materials undergoing single, dual or multiple damage factors of different forms (chemical, physical and structural). Due to the well-known complexity of sulfate attack on cement-based materials, the current work investigates the use of ANFIS to model the behaviour of a wide range of self-consolidating concrete (SCC) mixture designs under various high-concentration sodium sulfate exposure regimes including full immersion, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading. Three ANFIS models have been developed to predict the expansion, reduction in elastic dynamic modulus, and starting time of failure of the tested SCC specimens under the various high-concentration sodium sulfate exposure regimes. A fuzzy inference system was also developed to predict the level of aggression of environmental conditions associated with very severe sodium sulfate attack based on temperature, relative humidity and degree of wetting-drying. The results show that predictions of the ANFIS and fuzzy inference systems were rational and accurate, with errors not exceeding 5%. Sensitivity analyses showed that the trends of results given by the models had good agreement with actual experimental results and with thermal, mineralogical and micro-analytical studies.

Contribution of non-structural brick walls distributions on structures seismic responses

  • Farghaly, Ahmed Abdelraheem;Rahim, Hamdy H.A. Abdel
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.553-570
    • /
    • 2013
  • Using of masonry infill as partitions, in flat slab frame buildings is a common practice in many parts of the world. The infill is, generally, not considered in the design and the buildings are designed as bare frames. More of fundamental information in the effect of masomary infill on the seismic performance of RC building frames is in great demand for structural engineers. Therefore the main aim of this research is to evaluate the seismic performance of such buildings without (bare frame) and with various systems of the masonary infill. For this purpose, thirteen three dimensional models are chosen and analyzed by SAP2000 program. In this study the stress strain relation model proposed by Crisafulli for the hysteric behaviour of masonary subjected to cyclic loading is used. The results show that the nonstructural masonary infill can impart significant increase global strength and stiffness of such building frames and can enhance the seismic behaviour of flat slab frame building to large extent depending on infill wall system. As a result great deal of insight has been obtained on seismic response of such flat slab buildings which enable the structural engineer to determine the optimum position of infill wall between the columns.