• Title/Summary/Keyword: Linear Convolution

Search Result 125, Processing Time 0.027 seconds

A Study on Feature Extraction of Linear Image (선형적 영상의 특징 추출에 관한 연구)

  • 김춘영;한백룡;이대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.1
    • /
    • pp.74-84
    • /
    • 1988
  • This paper presents feature extraction technique for linear image using edge detection algorithms. The process of edge finding consists of determining edge magnitud and direction by convolution of an image with a number of edge masks, of thinning and ghresholding these edge magnitudes, of linking the edge elemtnts based on proximity ans orientation, and finally, of approximating the linked elements by piede-wise linear segmentss. These techniques are intened to be general and opplications to terminal detection and road recognition tasks are described. The presentation will be helpful to other researchers attempting to implement similar algorithms.

  • PDF

CONVOLUTION SUMS AND THEIR RELATIONS TO EISENSTEIN SERIES

  • Kim, Daeyeoul;Kim, Aeran;Sankaranarayanan, Ayyadurai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1389-1413
    • /
    • 2013
  • In this paper, we consider several convolution sums, namely, $\mathcal{A}_i(m,n;N)$ ($i=1,2,3,4$), $\mathcal{B}_j(m,n;N)$ ($j=1,2,3$), and $\mathcal{C}_k(m,n;N)$ ($k=1,2,3,{\cdots},12$), and establish certain identities involving their finite products. Then we extend these types of product convolution identities to products involving Faulhaber sums. As an application, an identity involving the Weierstrass ${\wp}$-function, its derivative and certain linear combination of Eisenstein series is established.

Study on Performance Improvement of Video in the H.264 Codec (H.264 코덱에서 동영상 성능개선 연구)

  • Bong, Jeong-Sik;Jeon, Joon-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.532-535
    • /
    • 2005
  • These days, many image processing techniques have been studied for effective image compression. Among those, 2D image filtering is widely used for 2D image processing. The 2D image filtering can be implemented by performing ID linear filtering separately in the direction of horizontal and vertical. Efficiency of image compression depends on what filtering method is used. Generally, circular convolution is widely used in the 2D image filtering for image processing. However it doesn't consider correlations at the region of image boundary, therefore filtering can not be performed effectively. To solve this problem. I proposed new convolution technique using Symmetric-Mirroring convolution, satisfying the 'alias-free' and 'error-free' requirement in the reconstructed image. This method could provide more effective performance than former compression methods. Because it used very high correlative data when performed at the boundary region. In this paper, pre-processing filtering in H.264 codec was adopted to analyze efficiency of proposed filtering technique, and the simulator developed by Matlab language was used to examine the performance of the proposed method.

  • PDF

Application of a Convolution Method for the Fast Prediction of Wind-Induced Surface Current in the Yellow Sea and the East China Sea (표층해류 신속예측을 위한 회선적분법의 적용)

  • 강관수;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.265-276
    • /
    • 1995
  • In this Paper, the Performance of the convolution method has been investigated as an effort to develop a simple system of predicting wind-driven surface current on a real time basis. In this approach wind stress is assumed to be spatially uniform and the effect of atmospheric pressure is neglected. The discrete convolution weights are determined in advance at each point using a linear three-dimensional Galerkin model with linear shape functions(Galerkin-FEM model). Four directions of wind stress(e.g. NE, SW, NW, SE) with unit magnitude are imposed in the model calculation for the construction of data base for convolution weights. Given the time history of wind stress, it is then possible to predict with-driven currents promptly using the convolution product of finite length. An unsteady wind stress of arbitrary form can be approximated by a series of wind pulses with magnitude of 6 hour averaged value. A total of 12 pulses are involved in the convolution product To examine the accuracy of the convolution method a series of numerical experiments has been carried out in the idealized basin representing the scale of the Yellow Sea and the East China Sea. The wind stress imposed varies sinusoidally in time. It was found that the predicted surface currents and elevation fields were in good agreement with the results computed by the direct integration of the Galerkin model. A model with grid 1/8$^{\circ}$ in latitude, l/6$^{\circ}$ in longitude was established which covers the entire region of the Yellow Sea and the East China Sea. The numerical prediction in terms of the convolution product has been carried out with particular attention on the formation of upwind flow in the middle of the Yellow Sea by northerly wind.

  • PDF

A Multi-Class Classifier of Modified Convolution Neural Network by Dynamic Hyperplane of Support Vector Machine

  • Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.21-31
    • /
    • 2023
  • In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.

SEVEN-PARAMETER MITTAG-LEFFLER OPERATOR WITH SECOND-ORDER DIFFERENTIAL SUBORDINATION RESULTS

  • Maryam K. Rasheed;Abdulrahman H. Majeed
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.903-917
    • /
    • 2023
  • This paper constructs a new linear operator associated with a seven parameters Mittag-Leffler function using the convolution technique. In addition, it investigates some significant second-order differential subordination properties with considerable sandwich results concerning that operator.

Reliability Analysis of the Non-normal Probability Problem for Limited Area using Convolution Technique (컨볼루션 기법을 이용한 영역이 제한된 비정규 확률문제의 신뢰성 해석)

  • Lee, Hyunman;Kim, Taegon;Choi, Won;Suh, Kyo;Lee, JeongJae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.49-58
    • /
    • 2013
  • Appropriate random variables and probability density functions based on statistical analysis should be defined to execute reliability analysis. Most studies have focused on only normal distributions or assumed that the variables showing non-normal characteristics follow the normal distributions. In this study, the reliability problem with non-normal probability distribution was dealt with using the convolution method in the case that the integration domains of variables are limited to a finite range. The results were compared with the traditional method (linear transformation of normal distribution) and Monte Carlo simulation method to verify that the application was in good agreement with the characteristics of probability density functions with peak shapes. However it was observed that the reproducibility was slightly reduced down in the tail parts of density function.