• Title/Summary/Keyword: Linear Constraint System

Search Result 152, Processing Time 0.024 seconds

Optical Pipelined Multi-bus Interconnection Network Intrinsic Topologies

  • d'Auriol, Brian Joseph
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.632-642
    • /
    • 2017
  • Digital all-optical parallel computing is an important research direction and spans conventional devices and convergent nano-optics deployments. Optical bus-based interconnects provide interesting aspects such as relative information communication speed-up or slow-down between optical signals. This aspect is harnessed in the newly proposed All-Optical Linear Array with a Reconfigurable Pipelined Bus System (OLARPBS) model. However, the physical realization of such communication interconnects needs to be considered. This paper considers spatial layouts of processing elements along with the optical bus light paths that are necessary to realize the corresponding interconnection requirements. A metric in terms of the degree of required physical constraint is developed to characterize the variety of possible solutions. Simple algorithms that determine spatial layouts are given. It is shown that certain communication interconnection structures have associated intrinsic topologies.

An Alternative Approach to Optimal Impulsive-Thrust Formation Reconfigurations in a Near-Circular-Orbit

  • Kim, Youngkwang;Park, Sang-Young;Park, Chandoek
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.160.1-160.1
    • /
    • 2012
  • We present an alternative approach for satellite formation reconfiguration by an optimal impulsive-thrust strategy to minimize the total characteristic velocity in a near-circular-orbit. Linear transformation decouples the Hill-Clohessy-Wiltshire(HCW) dynamics into a new block-diagonal system matrix consisting of 1-dimensional harmonic oscillator and 2-dimensional subsystem. In contrast to a solution based on the conventional primer vector theory, the optimal solution and the necessary conditions are represented as times and directions of impulses. New analytical expression of the total characteristic velocity is found for each sub systems under general boundary conditions including transfer time constraint. To minimize the total characteristic velocity, necessary conditions for times and directions of impulses are analytically solved. While the solution to the 1-dimensional harmonic oscillator has been found, the solution to the 2-dimensional subsystem is currently under construction. Our approach is expected to be applicable to more challenging problems.

  • PDF

Constraint Directed Course Scheduling in Meta-Programming (메타프로그래밍 제어를 통한 제약 중심의 코스 스케줄링에 관한 연구)

  • 정종진;조근식
    • Journal of Intelligence and Information Systems
    • /
    • v.1 no.1
    • /
    • pp.111-122
    • /
    • 1995
  • 전통적으로 스케줄링 문제를 해결하기 위해 LP(Linear Programming) 기법이 주로 적용되어 왔으나, 스케줄링 문제의 많은 자원과 지식, 제약조건의 복잡한 상관 관계를 LPrl법으로 표현하고 처리하기가 쉽지 않다. 따라서 최근에는 AI 기법을 스케줄링 문제에 많이 적용하고 있고, AI 기법은 지식 표현 및 휴리스틱을 다루기에 효과적이므로 문제를 모델링하고 해결하는데 용이하다 할 수 있다. 본 논문에서는 AI 기법을 기반으로 하여 스케줄링에 적합한 휴리스틱 및, 탐색기법, 지식표현 방법등을 연구하고, 이를 바탕으로 코스 스케줄링 시스템을 구현하였다. 먼저 시스템은 전체적으로 메타프로그래밍을 통하여 초기 스케줄링(initial scheduling)과 동적스케줄링 (reactive scheduling)을 수행하도록 하였다. 메타프로그램이 초기 스케줄링을 수행할때에는 휴리스틱과 자체적인 도메인 여과기법을 적용하여 탐색 공간의 불일치 요소(inconsistency)를 제거시킴으로써 백트랙킹의 발생을 최소화시켰다. 또한 초기 스케줄링의 결과를 가지고 메타프로그래밍이 동적 재스케줄링을 수행할때에는 제약조건을 통한 휴리스틱을 이용하여 초기해에 대한 조정을 최소화할 수 있는 메카니즘을 제시하였다. 이에 대한 적용 결과는 실험을 통하여 기존의 논리 언어가 제공하는 탐색 알고리즘과 비교하고 분석하였다.

  • PDF

Optimization of Quantity Allocation using Integer Linear Programming in Shipbuilding Industry (정수 선형 최적화를 이용한 조선해양 의장품 제작 물량 할당에 관한 연구)

  • Park, JungGoo;Kim, MinGyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.45-51
    • /
    • 2020
  • In this study, we developed an allocation optimization system for supply chain management in the shipbuilding and offshore construction industry. Supply chain operation is a way of operating manufacturing company responsible for the procurement of outfitting parts. The method about how to allocate the manufacturing volume to each partner company includes important decisions. According to the allocation method, the stability of the material supplied to the final installation process is guaranteed. We improved the allocation method that was previously decided by the person in charge. Based on the optimization engine, a system is developed that can automatically allocate the production volume. For optimization model configuration, factors affecting the volume allocation were analyzed and modeled as constraint factors. A target function is defined to minimize the difference in the load variance of each partner company. In order to use the same type of volume allocation engine for various outfitting products, the amount of work done by the partner company was standardized. We developed an engine that can allocate the same production load of each production partner. Using this engine, the operating system was developed and applied to the actual offshore project. It has been confirmed that the work load variance of suppliers can be maintained uniformly using the optimization engine rather than manual method. By this system, we stabilize the manufacturing process of partner suppliers.

A Linear-Time Heuristic Algorithm for k-Way Network Partitioning (선형의 시간 복잡도를 가지는 휴리스틱 k-방향 네트워크 분할 알고리즘)

  • Choi, Tae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1183-1194
    • /
    • 2004
  • Network partitioning problem is to partition a network into multiple blocks such that the size of cutset is minimized while keeping the block sizes balanced. Among these, iterative algorithms are regarded as simple and efficient which are based on cell move of Fiduccia and Mattheyses algorithm, Sanchis algorithm, or Kernighan and Lin algorithm. All these algorithms stipulate balanced block size as a constraint that should be satisfied, which makes a cell movement be inefficient. Park and Park introduced a balancing coefficient R by which the block size balance is considered as a part of partitioning cost, not as a constraint. However, Park and Park's algorithm has a square time complexity with respect to the number of cells. In this paper, we proposed Bucket algorithm that has a linear time complexity with respect to the number of cells, while taking advantage of the balancing coefficient. Reducing time complexity is made possible by a simple observation that balancing cost does not vary so much when a cell moves. Bucket data structure is used to maintain partitioning cost efficiently. Experimental results for MCNC test sets show that cutset size of proposed algorithm is 63.33% 92.38% of that of Sanchis algorithm while our algorithm satisfies predefined balancing constraints and acceptable execution time.

  • PDF

A Comprehensive Analysis of the End-to-End Delay for Wireless Multimedia Sensor Networks

  • Abbas, Nasim;Yu, Fengqi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2456-2467
    • /
    • 2018
  • Wireless multimedia sensor networks (WMSNs) require real-time quality-of-service (QoS) guarantees to be provided by the network. The end-to-end delay is very critical metric for QoS guarantees in WMSNs. In WMSNs, due to the transmission errors incurred over wireless channels, it is difficult to obtain reliable delivery of data in conjunction with low end-to-end delay. In order to improve the end-to-end delay performance, the system has to drop few packets during network congestion. In this article, our proposal is based on optimization of end-to end delay for WMSNs. We optimize end-to-end delay constraint by assuming that each packet is allowed fixed number of retransmissions. To optimize the end-to-end delay, first, we compute the performance measures of the system, such as end-to-end delay and reliability for different network topologies (e.g., linear topology, tree topology) and against different choices of system parameters (e.g., data rate, number of nodes, number of retransmissions). Second, we study the impact of the end-to-end delay and packet delivery ratio on indoor and outdoor environments in WMSNs. All scenarios are simulated with multiple run-times by using network simulator-2 (NS-2) and results are evaluated and discussed.

Uplink Power Control Scheme for Virtual MIMO Multi-Cell Systems (가상 MIMO 다중 셀 시스템을 위한 역방향 전력 제어 방법)

  • Yang, Janghoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.6
    • /
    • pp.535-544
    • /
    • 2013
  • This paper considers an uplink power control scheme for a virtual multi-input multi-output (MIMO) multi-cell system where multiple mobile stations with single transmit antenna form a virtual MIMO link. Unlike the conventional approach of the game theoretic formulation to add a power penalty term to improve the performance, a constraint on the total effective interference power is introduced to the maximization of the utility function of the transmission rate with linear receive beamforming. Introducing inertia, we show that the proposed power control is guaranteed to converge. The simulation results verify that the proposed power allocation can significantly improve the performance in an interference limited multi-cell system.

A Design Method Reducing the Effect of Zeros of a Cascaded Three-Parameters Controller: The Characteristic Ratio Assignment Approach (종속형제어기의 영점의 영향을 고려한 저차제어기의 설계: 특성비지정 접근법)

  • Hua, Jin Li;Lee, Kwan-Ho;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.158-160
    • /
    • 2005
  • This paper presents a new approach to the problem of designing a cascaded three-parameters controller for a given linear time invariant (LTD plant in unity feedback system. We consider a proportional-integral-derivative (PID) and a first-order controller with specified overshoot and settling time. This problem is difficult to solve because there may be no analytical solution due to the use of low-order controller and furthermore. the zeros of controller just appear in the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so that the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the given interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment (CRA) in order to deal with the time response specifications. It is noted that the proposed methods are accomplished only in parameter space. Several illustrative examples are given.

  • PDF

An Optimal Fixed-lag FIR Smoother for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 고정 시간 지연 FIR 평활기)

  • Kwon, Bo-Kyu;Han, Soohee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • In this paper, we propose an optimal fixed-lag FIR (Finite-Impulse-Response) smoother for a class of discrete time-varying state-space signal models. The proposed fixed-lag FIR smoother is linear with respect to inputs and outputs on the recent finite horizon and estimates the delayed state so that the variance of the estimation error is minimized with the unbiased constraint. Since the proposed smoother is derived with system inputs, it can be adapted to feedback control system. Additionally, the proposed smoother can give more general solution than the optimal FIR filter, because it reduced to the optimal FIR filter by setting the fixed-lag size as zero. A numerical example is presented to illustrate the performance of the proposed smoother by comparing with an optimal FIR filter and a conventional fixed-lag Kalman smoother.

A Design Method Reducing the Effect of Zeros of a Cascaded Three-Parameters Controller: The Characteristic Ratio Assignment Approach (종속형제어기의 영점의 영향을 고려한 3-파라미터 제어기의 설계: 특성비지정 접근법)

  • Jin Li-Hua;Lee Kwan-Ho;Kim Young-Chol
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.20-23
    • /
    • 2006
  • This paper presents a new approach to the problem of designing a cascaded three-parameters controller for a given linear time invariant (LTI) plant in unity feedback system. We consider a proportional-integral-derivative (PID) and a first-order controller with the specified overshoot and settling time. This problem is difficult to solve because there may be no analytical solution due to the use of low-order controller. Furthermore, the zeros of controller just appear in the zeros of feedback system. The key idea of our method is to impose a constraint on the controller parameters so that the zeros of resulting controller are distant from the dominant pole of closed-loop system to the left as far as the given interval. Two methods realizing the idea are suggested. We have employed the characteristic ratio assignment (CRA) in order to deal with the time response specifications. It is noted that the proposed methods are accomplished only in parameter space. Several illustrative examples are given.