• Title/Summary/Keyword: Linear Complexity

Search Result 685, Processing Time 0.025 seconds

Analytical evaluation of the moment-rotation response of beam-to-column composite joints under static loading

  • da Silva, L. Simoes;Coelho, Ana M. Girao;Simoes, Rui A.D.
    • Steel and Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.245-268
    • /
    • 2001
  • The analysis of steel-concrete composite joints presents some particular aspects that increase their complexity when compared to bare steel joints. In particular, the influence of slab reinforcement and column concrete encasement clearly change the moment-rotation response of the joint. Starting from an energy approach developed in the context of steel joints, an extension to composite joints is presented in this paper that is able to provide closed-form analytical solutions. In addition, the possibility of tri-linear or non-linear component behaviour is also incorporated in the model, enabling adequate treatment of the influence of cracked concrete in tension and the softening response of the column web in compression. This methodology is validated through comparison with experimental tests carried out at the University of Coimbra.

Space-Time Block Coding Techniques for MIMO 2×2 System using Walsh-Hadamard Codes

  • Djemamar, Younes;Ibnyaich, Saida;Zeroual, Abdelouhab
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Herein, a new space-time block coding technique is proposed for a MIMO 2 × 2 multiple-input multiple output (MIMO) system to minimize the bit error rate (BER) in Rayleigh fading channels with reduced decoding complexity using ZF and MMSE linear detection techniques. The main objective is to improve the service quality of wireless communication systems and optimize the number of antennas used in base stations and terminals. The idea is to exploit the correlation product technique between both information symbols to transmit per space-time block code and their own orthogonal Walsh-Hadamard sequences to ensure orthogonality between both symbol vectors and create a full-rate orthogonal STBC code. Using 16 quadrature amplitude modulation and the quasi-static Rayleigh channel model in the MATLAB environment, the simulation results show that the proposed space-time block code performs better than the Alamouti code in terms of BER performance in the 2 × 2 MIMO system for both cases of linear decoding ZF and MMSE.

Generalization of Galois Linear Feedback Register (갈로이 선형 궤환 레지스터의 일반화)

  • Park Chang-Soo;Cho Gyeong-Yeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.1 s.307
    • /
    • pp.1-8
    • /
    • 2006
  • This thesis proposes Arithmetic Shift Register(ASR) which can be used as pseudo random number generator. Arithmetic Shift. Register is defined as progression that multiplies random number D , not 0 or 1 at initial value which is not 0, and it is represented as ASR-D in this thesis. Irreducible polynomial that t which makes $'D^k=1'$ satisfies uniquely as $'t=2^n-1'$ over. $GF(2^n)$ is the characteristic polynomial of ASR-D , and the cycle of Arithmetic Shift Register has maximum cycle as $'2^n-1'$. Galois Linear Feedback Shift Register corresponds to ASR-2-1. Therefore, Arithmetic Shift Register proposed in this thesis generalizes Galois Linear Feedback Shift Register. Linear complexity of ASR-D over$GF(2^n)$ is $'n{\leq}LC{\leq}\frac{n^2+n}{2}'$ and in comparison with existing Linear Feedback Shift Register stability is high. The Software embodiment of arithmetic shift register proposed in this thesis is efficient than that of existing Linear Shift Register and hardware complexity is equal. Arithmetic shift register proposed in this thesis can be used widely in various fields such as cipher, error correcting codes, Monte Carlo integral, and data communication etc along with existing linear shift register.

Algorithm for a Minimum Linear Arrangement(MinLA) of Lattice Graph (격자 그래프의 최소선형배열 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.105-111
    • /
    • 2024
  • This paper deals with the minimum linear arrangement(MinLA) of a lattice graph, to which an approximate algorithm of linear complexity O(n) remains as a viable solution, deriving the optimal MinLA of 31,680 for 33×33 lattice. This paper proposes a partitioning arrangement algorithm of complexity O(1) that delivers exact solution to the minimum linear arrangement. The proposed partitioning arrangement algorithm could be seen as loading boxes into a container. It firstly partitions m rows into r1,r2,r3 and n columns into c1,c2,c3, only to obtain 7 containers. Containers are partitioning with a rule. It finally assigns numbers to vertices in each of the partitioned boxes location-wise so as to obtain the MinLA. Given m,n≥11, the size of boxes C2,C4,C6 is increased by 2 until an increase in the MinLA is detected. This process repeats itself 4 times at maximum given m,n≤100. When tested to lattice in the range of 2≤n≤100, the proposed algorithm has proved its universal applicability to lattices of both m=n and m≠n. It has also obtained optimal results for 33×33 and 100×100 lattices superior to those obtained by existing algorithms. The minimum linear arrangement algorithm proposed in this paper, with its simplicity and outstanding performance, could therefore be also applied to the field of Very Large Scale Integration circuit where m,n are infinitely large.

Receivers for Spatially Multiplexed Space-Time Block Coded Systems : Reduced Complexity (시공간블록부호화를 적용한 공간다중화 시스템 수신기 : 복잡도 감소 방안)

  • Hwang Hyeon Chyeol;Shin Seung Hoon;Lee Cheol Jin;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1244-1252
    • /
    • 2004
  • In this paper, we derive some properties of linear detectors (zero forcing or minimum mean square error) at spatial multiplexing systems with alamouti's space-time block code. Based on the derived properies, this paper proposes low-complexity receivers. Implementing MMSE detector adaptively, the number of weight vectors to be calculated and updated is greatly reduced with the derived properties compared to the conventional methods. In the case of recursive least square algorithm, with the proposed approach computational complexity is reduced to less than the half. We also identify that sorted QR decomposition detector, which reduces the complexity of V-Blast detector, has the same properties for unitary matrix Q and upper triangular matrix R. A complexity reduction of about 50%, for sorted QR decomposition detector, can be achieved by using those properties without the loss of performance.

Complexity Comparison of Center of Pressure between Fallers and Non-fallers during Gait (보행 시 낙상 유무에 따른 압력중심점의 복잡성 비교)

  • Park, Sang Kyoon;Ryu, Sihyun;Kim, Jongbin;Yoon, Sukhoon;Ryu, Jiseon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.113-119
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the effect of the falls on the center of pressure (CoP) complexity during gait using non-linear approximate entropy (ApEn). Method: 20 elderly women with experience of falling ($age=72.55{\pm}5.42yrs$; $height=154.40{\pm}4.26cm$; $body\;weight=57.40{\pm}6.21kg$; $preferred\;gait\;speed=0.52{\pm}0.17m/s$) and 20 elderly women with no experience of falling ($age=71.90{\pm}2.90yrs$; $height=155.28{\pm}4.73cm$; $body\;weight=56.70{\pm}5.241kg$; $preferred\;gait\;speed=0.56{\pm}0.13m/s$) were recruited for the study. While they were walking at their preferred gait speed on a treadmill (instrumented dual belt treadmills, Bertec, USA) with a force plate CoP data were collected for the 20 strides. The complexity of the CoP was analyzed using the ApEn technique. Results: The ApEn of the medial-lateral CoP in the fallers showed smaller about 16% compared to the non-fallers (p<.05). The ApEn of the antero-posterior CoP of the fallers showed smaller about 12% compared to the non-fallers, but the difference was not statistically significant. Conclusion: Based on the results of this study, the reduction of the medio-lateral CoP complexity in the elderly gait would be an index to determine the potential fall.

The Design of Pattern Classification based on Fuzzy Combined Polynomial Neural Network (퍼지 결합 다항식 뉴럴 네트워크 기반 패턴 분류기 설계)

  • Rho, Seok-Beom;Jang, Kyung-Won;Ahn, Tae-Chon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.534-540
    • /
    • 2014
  • In this paper, we propose a fuzzy combined Polynomial Neural Network(PNN) for pattern classification. The fuzzy combined PNN comes from the generic TSK fuzzy model with several linear polynomial as the consequent part and is the expanded version of the fuzzy model. The proposed pattern classifier has the polynomial neural networks as the consequent part, instead of the general linear polynomial. PNNs are implemented by stacking the simple polynomials dynamically. To implement one layer of PNNs, the various types of simple polynomials are used so that PNNs have flexibility and versatility. Although the structural complexity of the implemented PNNs is high, the PNNs become a high order-multi input polynomial finally. To estimate the coefficients of a polynomial neuron, The weighted linear discriminant analysis. The output of fuzzy rule system with PNNs as the consequent part is the linear combination of the output of several PNNs. To evaluate the classification ability of the proposed pattern classifier, we make some experiments with several machine learning data sets.

Efficient non-linear analysis and optimal design of biomechanical systems

  • Shojaei, I.;Kaveh, A.;Rahami, H.;Bazrgari, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2015
  • In this paper a method for simultaneous swift non-linear analysis and optimal design/posture of mechanical/biomechanical systems is presented. The method is developed to get advantages of iterations in non-linear analysis and/or generations in genetic algorithm (GA) for the purpose of efficient analysis within the optimal design/posture. The method is applicable for both size and geometry optimizations wherein material and geometry non-linearity are present. In addition to established mechanical systems, the method can solve biomechanical models of human musculoskeletal system. Optimization-based procedures are popular methods for resolving the redundancy at joints wherein the number of unknown muscle forces is far more than the number of equilibrium equations. These procedures involve optimization of a cost function(s) which is assumed to be consistent with the central nervous system's strategy when activating muscles to assure equilibrium. However, because of the complexity of biomechanical problems (i.e., due to non-linear biomaterial, large deformation, redundancy of the problem and so on) efficient analysis are required within optimization procedures as suggested in this paper.

Ne-Ne 레이저의 간섭을 이용한 고정밀 리니어 스케일의 제작에 관한 연구

  • 전병욱;박두원;이명호;한응교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.176-194
    • /
    • 1991
  • A study on the Manufactiring of High-Precision Linear Scale by the Use of He-Ne Laser Interference Of late, along with the advancement of procision machining technology, the reauirement of super-precision measurement increases as time goes on, and the precision and accuracy of standard scale which is a basis of procision measurement has been cognized as a oriterion of industrial development in a nation. Up to now, mechanical and chemical methods have been widely employed to carve scale lines on linear scale, and it is impossible for the linear scale manufactured by means of those methods to guarantee the measurement with sub-micron level owing to errors attended with various problems. And the measuring length also bears errors subjected to the influence of surroundings condition, and shows inefficient circumstances in measurement on the ground of the complexity of measuring procedure as well as massive measuring apparatus. Hence in this paper, we described on technology by which we can carve scale lines thru optical method under the condition of laboratory by using rhcoherence of He-Ne two-mode stabilized laser and in turn, put it to practical use as linear scale for the measurment of lengrh. In this researchin the case of setting scale interval to 20 .mu. m, we employed super-precision scale-carving device associated by Ar larser and acoustic optical modulator in lieu of flsahing lamp scale-carving device, and we consequently obtained superior linear scales carved with precision and accuracy of .+-. 0.3 .mu. m.

Quantization of LPC Coefficients Using a Multi-frame AR-model (Multi-frame AR model을 이용한 LPC 계수 양자화)

  • Jung, Won-Jin;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • For speech coding, a vocal tract is modeled using Linear Predictive Coding (LPC) coefficients. The LPC coefficients are typically transformed to Line Spectral Frequency (LSF) parameters which are advantageous for linear interpolation and quantization. If multidimensional LSF data are quantized directly using Vector-Quantization (VQ), high rate-distortion performance can be obtained by fully utilizing intra-frame correlation. In practice, since this direct VQ system cannot be used due to high computational complexity and memory requirement, Split VQ (SVQ) is used where a multidimensional vector is split into multilple sub-vectors for quantization. The LSF parameters also have high inter-frame correlation, and thus Predictive SVQ (PSVQ) is utilized. PSVQ provides better rate-distortion performance than SVQ. In this paper, to implement the optimal predictors in PSVQ for voice storage devices, we propose Multi-Frame AR-model based SVQ (MF-AR-SVQ) that considers the inter-frame correlations with multiple previous frames. Compared with conventional PSVQ, the proposed MF-AR-SVQ provides 1 bit gain in terms of spectral distortion without significant increase in complexity and memory requirement.