• 제목/요약/키워드: Linear Buckling

검색결과 385건 처리시간 0.019초

일정체적 캔틸레버 기둥의 좌굴하중 및 후좌굴 거동 (Buckling Loads and Post-Buckling Behavio of Cantilever Column with Constant Volume)

  • 이승우;이태은;김권식;이병구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.935-940
    • /
    • 2006
  • Numerical methods are developed for solving the elastica and buckling load of cantilever column with constant volume, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the horizontal deflection at free end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF

Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites

  • Khalaf, Basima Salman;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • 제8권3호
    • /
    • pp.219-235
    • /
    • 2019
  • This research is devoted to analyzing mechanical-thermal post-buckling behavior of a micro-size beam reinforced with graphene platelets (GPLs) based on geometric imperfection effects. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. The micro-size beam is considered to be perfect (ideal) or imperfect. Buckling mode shape of the micro-size beam has been assumed as geometric imperfection. Modified couple stress theory has been used for describing scale-dependent character of the beam having micro dimension. Via an analytical procedure, post-buckling path of the micro-size beam has been derived. It will be demonstrated that nonlinear buckling characteristics of the micro-size beam are dependent on geometric imperfection amplitude, thermal loading, graphene distribution and couple stress effects.

Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • 제41권6호
    • /
    • pp.775-789
    • /
    • 2012
  • This paper focuses on post-buckling analysis of functionally graded Timoshenko beam subjected to thermal loading by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. As far as the authors know, there is no study on the post-buckling analysis of functionally graded Timoshenko beams under thermal loading considering full geometric non-linearity investigated by using finite element method. The convergence studies are made and the obtained results are compared with the published results. In the study, with the effects of material gradient property and thermal load, the relationships between deflections, end constraint forces, thermal buckling configuration and stress distributions through the thickness of the beams are illustrated in detail in post-buckling case.

춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 해석적 평가 (An Analytical Evaluation on Buckling Resistance of Tapered H-Section Deep Beam)

  • 이성희;심현주;이은택;홍순조;최성모
    • 한국강구조학회 논문집
    • /
    • 제19권5호
    • /
    • pp.493-501
    • /
    • 2007
  • 최근, 국내에서는 물량절감과 경제성 확보를 목적으로 변단면 부재의 적용이 활발히 이루어지고 있으나 재료비선형을 이용한 설계방법으로는 취성파괴의 문제점에 대한 명확한 해결책을 제시하지 못하고 있으며, 변단면 부재의 초기변형, 폭두께비, 웨브 스티프너, 횡지지 거리등에 관한 연구가 부족한 실정이다. 따라서 본 연구에서는 기존에 연구된 이론식과 재료 및 기하 비선형 해석으로 신뢰성이 입증된 범용 유한요소 해석 프로그램인 ANSYS 9.0을 이용하여 춤이 큰 변단면 H형 보의 해석 모델을 완성하고 실험결과를 바탕으로 판-폭두께비와 비지지거리를 주요변수로 좌굴 및 극한내력을 평가하여, 웨브의 판폭두께비가 클 경우 좌굴내력이 감소하며, 횡 비지지 거리를 짧게 할 경우 연성능력을 향상시킬수 있음을 확인 하였다.

Post-buckling analysis of aorta artery under axial compression loads

  • Akbas, Seref Doguscan;Mercan, Kadir;Civalek, Omer
    • Advances in nano research
    • /
    • 제8권3호
    • /
    • pp.255-264
    • /
    • 2020
  • Buckling and post-buckling cases are often occurred in aorta artery because it affected by higher pressure. Also, its stability has a vital importance to humans and animals. The loss of stability in arteries may lead to arterial tortuosity and kinking. In this paper, post-buckling analysis of aorta artery is investigated under axial compression loads on the basis of Euler-Bernoulli beam theory by using finite element method. It is known that post-buckling problems are geometrically nonlinear problems. In the geometrically nonlinear model, the Von Karman nonlinear kinematic relationship is employed. Two types of support conditions for the aorta artery are considered. The considered non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The aorta artery is modeled as a cylindrical tube with different average diameters. In the numerical results, the effects of the geometry parameters of aorta artery on the post-buckling case are investigated in detail. Nonlinear deflections and critical buckling loads are obtained and discussed on the post-buckling case.

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • 제10권1호
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.

Analytical approximate solution for Initial post-buckling behavior of pipes in oil and gas wells

  • Yu, Yongping;Sun, Youhong;Han, Yucen
    • Coupled systems mechanics
    • /
    • 제1권2호
    • /
    • pp.155-163
    • /
    • 2012
  • This paper presents analytical approximate solutions for the initial post-buckling deformation of the pipes in oil and gas wells. The governing differential equation with sinusoidal nonlinearity can be reduced to form a third-order-polynomial nonlinear equation, by coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. The linearization is performed prior to proceeding with harmonic balancing thus resulting in a set of linear algebraic equations instead of one of non-linear algebraic equations, unlike the classical method of harmonic balance. We are hence able to establish analytical approximate solutions. The approximate formulae for load along axis, and periodic solution are established for derivative of the helix angle at the end of the pipe. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

Effects of imperfection shapes on buckling of conical shells under compression

  • Shakouri, Meisam;Spagnoli, Andrea;Kouchakzadeh, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제60권3호
    • /
    • pp.365-386
    • /
    • 2016
  • This paper describes a systematic numerical investigation into the nonlinear elastic behavior of conical shells, with various types of initial imperfections, subject to a uniformly distributed axial compression. Three different patterns of imperfections, including first axisymmetric linear bifurcation mode, first non-axisymmetric linear bifurcation mode, and weld depression are studied using geometrically nonlinear finite element analysis. Effects of each imperfection shape and tapering angle on imperfection sensitivity curves are investigated and the lower bound curve is determined. Finally, an empirical lower bound relation is proposed for hand calculation in the buckling design of conical shells.

Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions

  • Ibrahimbegovic, Adnan;Hajdo, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.349-374
    • /
    • 2013
  • In this work we propose a novel procedure for direct computation of buckling loads for extreme mechanical or thermomechanical conditions. The procedure efficiency is built upon the von Karmann strain measure providing the special format of the tangent stiffness matrix, leading to a general linear eigenvalue problem for critical load multiplier estimates. The proposal is illustrated on a number of validation examples, along with more complex examples of interest for practical applications. The comparison is also made against a more complex computational procedure based upon the finite strain elasticity, as well as against a more refined model using the frame elements. All these results confirm a very satisfying performance of the proposed methodology.

Analytical solutions for buckling of simply supported rectangular plates due to non-linearly distributed in-plane bending stresses

  • Jana, Prasun;Bhaskar, K.
    • Structural Engineering and Mechanics
    • /
    • 제26권2호
    • /
    • pp.151-162
    • /
    • 2007
  • Rigorous analytical solutions are obtained for the plane stress problem of a rectangular plate subjected to non-linearly distributed bending loads on two opposite edges. They are then used in a Galerkin type solution to obtain the corresponding convergent buckling loads. It is shown that the critical bending moment depends significantly on the actual edge load distribution and further the number of nodal lines of the buckled configuration can also be different from that corresponding to a linear antisymmetric distribution of the bending stresses. Results are tabulated for future use while judging approximate numerical solutions.