• Title/Summary/Keyword: Linear Approach

Search Result 2,800, Processing Time 0.042 seconds

An Approach to Applying Multiple Linear Regression Models by Interlacing Data in Classifying Similar Software

  • Lim, Hyun-il
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.268-281
    • /
    • 2022
  • The development of information technology is bringing many changes to everyday life, and machine learning can be used as a technique to solve a wide range of real-world problems. Analysis and utilization of data are essential processes in applying machine learning to real-world problems. As a method of processing data in machine learning, we propose an approach based on applying multiple linear regression models by interlacing data to the task of classifying similar software. Linear regression is widely used in estimation problems to model the relationship between input and output data. In our approach, multiple linear regression models are generated by training on interlaced feature data. A combination of these multiple models is then used as the prediction model for classifying similar software. Experiments are performed to evaluate the proposed approach as compared to conventional linear regression, and the experimental results show that the proposed method classifies similar software more accurately than the conventional model. We anticipate the proposed approach to be applied to various kinds of classification problems to improve the accuracy of conventional linear regression.

A dynamical stochastic finite element method based on the moment equation approach for the analysis of linear and nonlinear uncertain structures

  • Falsone, Giovanni;Ferro, Gabriele
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.599-613
    • /
    • 2006
  • A method for the dynamical analysis of FE discretized uncertain linear and nonlinear structures is presented. This method is based on the moment equation approach, for which the differential equations governing the response first and second-order statistical moments must be solved. It is shown that they require the cross-moments between the response and the random variables characterizing the structural uncertainties, whose governing equations determine an infinite hierarchy. As a consequence, a closure scheme must be applied even if the structure is linear. In this sense the proposed approach is approximated even for the linear system. For nonlinear systems the closure schemes are also necessary in order to treat the nonlinearities. The complete set of equations obtained by this procedure is shown to be linear if the structure is linear. The application of this procedure to some simple examples has shown its high level of accuracy, if compared with other classical approaches, such as the perturbation method, even for low levels of closures.

A Study on a Solution Approach to Fuzzy Linear Programs and Its Application to Fuzzy DEA Models (퍼지 선형계획법 해법 및 퍼지 DEA에의 적용에 관한 연구)

  • Lim, Sung-Mook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.51-60
    • /
    • 2008
  • A solution method for fuzzy linear programs is proposed. A fuzzy linear program is converted to a crisp linear program with average indices being applied to the objective function and constraints. A comparative analysis between the proposed average index approach and the possibilistic approach is given. As an application example, the proposed method is applied to the linear programming model for fuzzy data envelopment analysis, and the result is compared with that of the possibilistic approach.

Interactive Fuzzy Linear Programming with Two-Phase Approach

  • Lee Jong-Hwan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.3
    • /
    • pp.232-239
    • /
    • 2006
  • This paper is for applying interactive fuzzy linear programming for the problem of product mix planning, which is one of the aggregate planning problem. We developed a modified algorithm, which has two-phase approach for interactive fuzzy linear programming to get a better solution. Adding two-phase method, we expect to obtain not only the highest membership degree, but also a better utilization of each constrained resource.

Large Robust Designs for Generalized Linear Model

  • Kim, Young-Il;Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.289-298
    • /
    • 1999
  • We consider a minimax approach to make a design robust to many types or uncertainty arising in reality when dealing with non-normal linear models. We try to build a design to protect against the worst case, i.e. to improve the "efficiency" of the worst situation that can happen. In this paper, we especially deal with the generalized linear model. It is a known fact that the generalized linear model is a universal approach, an extension of the normal linear regression model to cover other distributions. Therefore, the optimal design for the generalized linear model has very similar properties as the normal linear model except that it has some special characteristics. Uncertainties regarding the unknown parameters, link function, and the model structure are discussed. We show that the suggested approach is proven to be highly efficient and useful in practice. In the meantime, a computer algorithm is discussed and a conclusion follows.

  • PDF

Evolutionary Computation Approach to Wiener Model Identification

  • Oh, Kyu-Kwon;Okuyama, Yoshifumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.33.1-33
    • /
    • 2001
  • We address a novel approach to identify a nonlinear dynamic system for Wiener models, which are composed of a linear dynamic system part followed by a nonlinear static part. The aim of system identification here is to provide the optimal mathematical model of both the linear dynamic and the nonlinear static parts in some appropriate sense. Assuming the nonlinear static part is invertible, we approximate the inverse function by a piecewise linear function. We estimate the piecewise linear inverse function by using the evolutionary computation approach such as genetic algorithm (GA) and evolution strategies (ES), while we estimate the linear dynamic system part by the least squares method. The results of numerical simulation studies indicate the usefulness of proposed approach to the Wiener model identification.

  • PDF

Efficiency of Aggregate Data in Non-linear Regression

  • Huh, Jib
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.327-336
    • /
    • 2001
  • This work concerns estimating a regression function, which is not linear, using aggregate data. In much of the empirical research, data are aggregated for various reasons before statistical analysis. In a traditional parametric approach, a linear estimation of the non-linear function with aggregate data can result in unstable estimators of the parameters. More serious consequence is the bias in the estimation of the non-linear function. The approach we employ is the kernel regression smoothing. We describe the conditions when the aggregate data can be used to estimate the regression function efficiently. Numerical examples will illustrate our findings.

  • PDF

Design of robust LQR/LQG controllers by LMIs (Linear Matrix Inequalities(LMIs)를 이용한 강인한 LQR/LQG 제어기의 설계)

  • 유지환;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.988-991
    • /
    • 1996
  • The purpose of this thesis is to develop methods of designing robust LQR/LQG controllers for time-varying systems with real parametric uncertainties. Controller design that meet desired performance and robust specifications is one of the most important unsolved problems in control engineering. We propose a new framework to solve these problems using Linear Matrix Inequalities (LMls) which have gained much attention in recent years, for their computational tractability and usefulness in control engineering. In Robust LQR case, the formulation of LMI based problem is straightforward and we can say that the obtained solution is the global optimum because the transformed problem is convex. In Robust LQG case, the formulation is difficult because the objective function and constraint are all nonlinear, therefore these are not treatable directly by LMI. We propose a sequential solving method which consist of a block-diagonal approach and a full-block approach. Block-diagonal approach gives a conservative solution and it is used as a initial guess for a full-block approach. In full-block approach two LMIs are solved sequentially in iterative manner. Because this algorithm must be solved iteratively, the obtained solution may not be globally optimal.

  • PDF

Nonlinear damage detection using linear ARMA models with classification algorithms

  • Chen, Liujie;Yu, Ling;Fu, Jiyang;Ng, Ching-Tai
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Majority of the damage in engineering structures is nonlinear. Damage sensitive features (DSFs) extracted by traditional methods from linear time series models cannot effectively handle nonlinearity induced by structural damage. A new DSF is proposed based on vector space cosine similarity (VSCS), which combines K-means cluster analysis and Bayesian discrimination to detect nonlinear structural damage. A reference autoregressive moving average (ARMA) model is built based on measured acceleration data. This study first considers an existing DSF, residual standard deviation (RSD). The DSF is further advanced using the VSCS, and then the advanced VSCS is classified using K-means cluster analysis and Bayes discriminant analysis, respectively. The performance of the proposed approach is then verified using experimental data from a three-story shear building structure, and compared with the results of existing RSD. It is demonstrated that combining the linear ARMA model and the advanced VSCS, with cluster analysis and Bayes discriminant analysis, respectively, is an effective approach for detection of nonlinear damage. This approach improves the reliability and accuracy of the nonlinear damage detection using the linear model and significantly reduces the computational cost. The results indicate that the proposed approach is potential to be a promising damage detection technique.

A Linear Programming Model to the Score Adjustment among the CSAT Optional Subjects (대입수능 선택과목 점수조정을 위한 선형계획모형 개발 및 활용)

  • Nam, Bo-Woo
    • Korean Management Science Review
    • /
    • v.28 no.1
    • /
    • pp.141-158
    • /
    • 2011
  • This study concerns with an applicability of the management science approach to the score adjustment among the College Scholastic Aptitude Test(CSAT) optional subjects. A linear programming model is developed to minimize the sum of score distortions between optional subjects. Based on the analysis of the 377,089 CSAT(2010) applicants' performances in social science test section, this study proposes a new approach for the score equating or linking method of the educational measurement theory. This study makes up for the weak points in the previous linear programming model. First, the model utilize the standard score which we can get. Second, the model includes a goal programming concept which minimizes the gap between the adjusting goal and the result of the adjustment. Third, the objective function of the linear programing is the weighted sum of the score distortion and the number of applicants. Fourth, the model is applied to the score adjustment problem for the whole 11 optional subjects of the social science test section. The suggested linear programming model is a generalization of the multi-tests linking problem. So, the approach is consistent with the measurement theory for the two tests and can be applied to the optional three or more tests which do not have a common anchor test or a common anchor group. The college admission decision with CSAT score can be improved by using the suggested linear programming model.