• Title/Summary/Keyword: Linear Actuators

Search Result 248, Processing Time 0.025 seconds

A Study on Design and Manufacture of an Inchworm Linear Motor System (인치웜 리니어 모터 시스템 설계 및 제작에 관한 연구)

  • Ye Sang Don;Jeong Jae Hoon;Min Byeong Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.12
    • /
    • pp.174-181
    • /
    • 2004
  • Ultra precision positioning mechanism has widely been used on semiconductor manufacturing equipments, optical spectrum analyzer and cell manipulations. Ultra precision positioning mechanism is consisted of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design, analysis and manufacture all of the inchworm linear motor system, which is one of the equipments embodied in ultra precision positioning mechanism. Inchworm linear motor system is consisted of a controller system and an inchworm linear motor, and its driving form is similar to a motion of spanworm. A design and manufacture of inchworm linear motor, which is consisted of three PZT actuators, a rod, two columns and a guide plate, are performed. Minimizing the von-Mises stress of the hinge using Taguchi method and simulation by FEM software optimizes the structural design in a column of flexure hinge. The designed columns and guide plates are manufactured by a W-EDM and NC-milling. A controller system, which is an apparatus to drive inchworm linear motor, can easily adjust driving conditions by varying resonance frequency and input-output voltage of actuators and amplifiers. The performance of manufactured inchworm linear motor system is verified and valuated. In the future, inchworm linear motor system will be used to make a more precision positioning by reinforcing a sensor and feedback system.

Modeling and Evaluation of Linear Oscillating Actuators

  • Chen, X.;Zhu, Z.Q.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.517-524
    • /
    • 2012
  • The operation of linear oscillating system is complicated, involving system nonlinearities of both actuator and load, and variations of driving frequency in order to track the mechanical resonance. In this paper, both analytical and state-variable modeling techniques are used to investigate the influence of actuator parameters, such as back-emf/thrust force coefficient and cogging force, on the performance of linear oscillating systems. Analytical derivations are validated by simulations, and good agreements are achieved. The findings of the paper can greatly facilitate the design and evaluation processes of permanent magnet linear actuators.

Design of Braille cell Setting Actuators for the Application in the Braille Mouse Concept

  • Nobels, Tiene;Allemeersch, Frank;Hameyer, Kay
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.1
    • /
    • pp.12-19
    • /
    • 2004
  • Refreshable Braille displays have already been developed in the past, but they remain quite bulky and expensive. Small displays contain only a single or a few Braille cells, with pins pushing into the fingertips. However, they are not as successful as larger displays because the skin is more sensitive to lateral movement than to orthogonal pressure. This, paper presents the design of linear electromagnetic actuators, which allows a considerable reduction in size and cost for such refreshable Braille displays. Different actuator concepts are compared. A new actuator is proposed and optimised by means of finite element simulations, which are verified with measurements on a prototype.

Design of Gain Scheduled Controllers for Linear Systems with Saturating Actuators (포화 구동기를 갖는 선형 시스템의 이득 스케듈링 제어기 설계)

  • 송용희;김진훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.511-519
    • /
    • 2003
  • In this paper, we considered the design of gain scheduled controllers for linear systems with saturating actuators. Our basic idea is to design a control that uses higher control gain when the states are smaller, and lower gain when it is higher. By doing this, we can avoid the saturation and we can improve the performance. First, we derive a control and a reachable set expressed as LMI form, which minimizes not only the L$_2$ gain from the disturbance to the measured output but also the control is never saturated within this reachable set. Next, the reachable set is divided as nested subsets, and at each nested subset, the control gain is designed to minimize the L$_2$ gain and it is never saturated. Finally, the control gain is scheduled according to the status of states, i.e., the subset in which the states are located. A numerical example is presented to show that our gain scheduled control significantly improves the performance.

Design of Current PI Controller for 2-Axis Linear Actuator (2축 선형 엑츄에이터의 전류 PI제어기 설계)

  • Zun, Chan-Young;Kim, Jae-Han;Mok, Hyung-Soo;Choe, Gyu-Ha;Lee, Jung-Min;Kim, Sang-Hoon;Kim, Tae-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.321-324
    • /
    • 2007
  • The actuators of anti-vibration system(AVS) can be separated into several types: piezoelectric actuators, pneumatic springs, cylinders, rotating motor and linear motor. The last one has some advantages, such as low noise, low vibration, simpler configuration and possibility of direct drive. The voice coil motor(VCM) is one type of linear motor, originally used in speaker system. VCM actuators are usually used in occasions that rapid and controlled motion of devices are required. In this paper, a controller which satisfies system specification(e.g. current controller bandwidth) within whole operation range is designed. For that objective, parameters as position were initially obtained with 3D FEM analysis and motor modeling was performed. A current controller in 2-axis VCM drive system was designed and then performance of the proposed controller was verified with simulation using Simplorer and an experimental result.

  • PDF

Fabrication of Soft Textile Actuators Using NiTi Linear Shape Memory Alloy and Measurement of Dynamic Properties for a Smart Wearable (스마트 웨어러블용 NiTi계 선형 형상기억합금을 이용한 소프트 텍스타일 액추에이터 제작 및 동적 특성 측정)

  • Kim, Sang Un;Kim, Sang Jin;Kim, Jooyong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.6
    • /
    • pp.1154-1162
    • /
    • 2020
  • In this study, the soft textile actuator is produced for a smart wearable with the shape memory effects from linear shape memory alloys of Nickel and Titanium using the driving force through the fabrication process. The measurement model was designed to measure dynamic characteristics. The heating method, and memory shape of the linear shape memory alloy were set to measure the operating temperature. A shape memory alloy at 40.13℃, was used to heat the alloy with a power supply for the selective operation and rapid reaction speed. The required amount of current was obtained by calculating the amount of heat and (considering the prevention of overheating) set to 1.3 A. The fabrication process produced a soft textile actuator using a stitching technique for linear shape memory alloys at 0.5 mm intervals in the general fabric. The dynamic characteristics of linear shape memory alloys and actuators were measured and compared. For manufactured soft textile actuators, up to 0.8 N, twice the force of the single linear shape memory alloy, 0.38 N, and the response time was measured at 50 s.

Study on the Air Bearings with Actively Controllable Magnetic Preloads for an Ultra-precision Linear Stage (초정밀 직선 이송계용 능동 자기예압 공기베어링에 관한 연구)

  • Ro, Seung-Kook;Kim, Soo-Hyun;Kwak, Yoon-Keun;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.134-142
    • /
    • 2008
  • In this paper, we propose a precise linear motion stage supported by magnetically preloaded air bearings. The eight aerostatic bearings with rectangular carbon porous pads were located only one side of vertical direction under the platen where four bearings are in both sides of horizontal direction as wrap-around-design, and this gives simpler configuration than which constrained by air bearings for all direction. Each of the magnetic actuators has a permanent magnet generating static magnetic flux far required preload and a coil to perturb the magnetic farce resulting adjustment of air- bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder was designed and built to verify this design concept. The load capacity, stiffness and preload force were examined and compared with analysis. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed. It was shown that motion control far three DOF motions were linear and independent after calibration of the control gains.

H Control of Time-Delayed Linear Systems with Saturating Actuators (포화 구동기를 갖는 시간 시연 선형 시스템의 H 제어)

  • Song, Yong-Heui;Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1464-1470
    • /
    • 2010
  • In this paper, we consider the $H_{\infty}$ control of time-delayed linear systems with saturating actuators. The considered time-delay is a time-varying one having bounds on magnitude and time-derivative, and the control permits the predetermined degree of saturation. Based on two modified Lyapunov-Krasovskii(L-K) functionals, we derive a $H_{\infty}$ control in the form of linear matrix inequalities(LMI) having three non-convex design parameters. The result is dependent on the characteristics of time-delay, predetermined degree of saturation level, and bound of disturbance. Finally, we give a comparative example to show the effectiveness and usefulness of our result.

$H_{\infty}$ Controller Design of Linear Systems with Saturating Actuators (포화 구동기를 갖는 선형 시스템의 $H_{\infty}$ 제어기 설계)

  • Cho, Hyon-Chol;Kim, Jin-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.494-496
    • /
    • 1999
  • In this paper, we consider the design of a state feedback $H_{\infty}$ controller for uncertain linear systems with saturating actuators. We consider a general saturating actuator and employ the additive decomposition to deal with it effectively. And the considered uncertainty is the unstructured uncertainty which is only known its norm bound. Based on Linear Matrix Inequality(LMI) techniques, we present a condition on designing a controller that guarantees the $L_2$ gain, from the noise to the output, is not greater than a given value. A controller is obtained by checking the feasibility of three LMI's, and this can be easily done by well-known control package. Finally, we show the usefulness of our result by a numerical example.

  • PDF