• Title/Summary/Keyword: Line friction

Search Result 243, Processing Time 0.024 seconds

Tribology Characteristics of Bearing Steel (STB2) with Pattern Shape (Pattern 형상이 적용된 베어링 강(STB2)의 트라이볼러지 특성)

  • Song, S.O.;Jang, T.H.;Bae, M.K.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.130-136
    • /
    • 2021
  • With the development of the industry, bearings that require higher durability and efficiency are required, and various methods to reduce friction and wear of bearings are being studied. In this study, a wear test was conducted for STB2, a bearing steel material, by machining a micro-line pattern on the race surface of the bearing by machining. The pattern pitch of the specimens was processed to 40㎛, 80㎛, and 150㎛, and the coefficient of friction characteristics were investigated for the unpatterned specimen and the specimen with a DLC thin film deposited on the surface. As a result of the wear test, the pattern pitch showed the smallest coefficient of friction at 40㎛, and it was confirmed that the smaller the pattern pitch, the better the tribology characteristics.

Analysis of Dynamic Earth Pressure Based on Zero Extension Line Theory (영팽창선이론(零膨脹線理論)에 의한 동적토압해석(動的土壓解析))

  • Shin, Dong Hoon;Hwang, Jung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.235-244
    • /
    • 1993
  • The present study was made based on the zero extension line theory and the well-known Mononobe-Okabe's to determine the dynamic earth pressures acting on the retaining walls. The zero extension line theory, which was proposed by Roscoe et al., assumes the coincidence between the loci of failure and the zero extension lines in soil mass. ln order to compute the dynamic earth pressure developed by an earthquake, it was assumed that for the vertical retaining walls with no surcharge, the backfill materials are dense and cohesionless sandy soils, there are no changes in soil parameters during earthquake, and the horizontal earthquake intensity is considered. The effects of horizontal earthquake intensity, internal friction angle of soil, wall friction angle and dilation angle, on the earth pressure coefficients were analysed. Final1y, the presented theories were successfully compared with the Mononobe-Okabe's as well.

  • PDF

Evaluation of Skin Friction to Large Size Pneumatic Caissons (대형 뉴매틱케이슨의 주면마찰력 산정)

  • 홍원표;여규권;김태형
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.15-27
    • /
    • 2004
  • In this study, skin friction evaluation methods developed f3r deep foundation system were investigated and a method that can properly evaluate the skin friction of large size pneumatic caisson was proposed. Especially, based on Hong Won-Pyo's method, new technique (Kn parameter method) was suggested for estimation of the skin friction. The $\lambda$ method used widely to pile foundation was also investigated fur the applicability of estimation of the skin friction of large size pneumatic caisson. To do this, the data measured from the pneumatic caissons installed as a substructure of main tower in the suspension bridge part of Youngjong Grand Bridge were utilized. The data show that the skin friction is proportional to the rate of sinking, and the skin friction distribution with depth is similar to parabolic type rather straight line, which is a type generally observed in pile foundation. The skin frictions predicted by the Kn and $\lambda$ methods were plotted with the measured data for comparisons. It is cleary shown that the skin frictions estimated by the proposed Kn parameter method are well matched with the measured data. That is, for the large size pneumatic caisson having wide base, the new technique developed from Hong Won-Pyo's method is more suitable for estimation of the skin friction rather than the $\lambda$ method.

Molecular Dynamics Simulation of Contact Process in AFM/FFM Surface Observation

  • Shimizu, J.;Zhou, L.;Eda, H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.61-62
    • /
    • 2002
  • In order to clarify the contact mechanism between specimen surface and probe tip in the surface observation by the AFM (atomic force microscope) or the FFM (friction force microscope), several molecular dynamics simulations have been performed. In the simulation, a 3-dimensional simulation model is proposed where the specimen and the probe are assumed to consist of mono-crystal line copper and a carbon atom respectively and the effect of cantilever stiffness is also taken into considered. The surface observation process on a well-defined Cu{100} is simulated. The influences of cantilever stiffness on the reactive force images and the behavior of probe tip were evaluated. As a resuIt, several phenomena similar to those observed by the actual surface observation experiment, such as double-slip behavior and dispersion in the stick-slip wave period were observed.

  • PDF

J-integral for subsurface crack in circular plate with inner hole under rolling and sliding contact (구름 및 미끄럼 접촉하의 중공원판의 표면하층균열에 대한 J-적분)

  • Lee, Kang-Yong;Kim, June-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1149-1155
    • /
    • 1997
  • J-integral for a subsurface horizontal crack in a circular plate with an inner hole under rolling line contact is evaluated according to loading positions with various load conditions, crack length and crack location. Two-dimensional crack is modeled, and the relation between Tresca stress for uncracked model and J-integral is discussed. The loading location which gives the maximum J-integral depends on load condition and crack location, and the presence of friction force increases Tresca stress and J-integral near the surface. Regardless of friction force, crack location that gives maximum J-integral is the same as that of maximum Tresca stress in an uncracked model, and the value of J-integral is propotional to crack length. It is also showed that the variation of an inner radius of a disk does not effect J-integral value.

A Simple Method for Identifying Mechanical Parameters Based on Integral Calculation

  • Han, Sang-Heon;Yoo, Anno;Yoon, Sang Won;Yoon, Young-Doo
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1387-1395
    • /
    • 2016
  • A method for the identification of mechanical parameters based on integral calculation is presented. Both the moment of inertia and the friction constant are identified by the method developed here, which is based on well-known mechanical differential equations. The mechanical system under test is excited according to a pre-determined low-frequency sinusoidal motion, minimizing the distortion, and increasing the accuracy of the results. The parameters are identified using integral calculation, increasing the robustness of the results against measurement noise. Experimental data are supported by simulation, confirming the effectiveness of the proposed technique. The performance improvements shown here are of use in the design of speed and position controllers and observers. Owing to its simplicity, this method can be readily applied to commercial inverter products.

Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices (에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어)

  • Park, Ji-Hun;Kim, Gil-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

A Method of Accurate Position Control with a Pneumatic Cylinder Driving Apparatus

  • Jang Ji-Seong;Byun Jung-Hoan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.993-1001
    • /
    • 2006
  • In this paper, a method of accurate position control using a pneumatic cylinder driving apparatus is presented. To overcome the effect of friction force and transmission line, low friction type cylinder applied externally pressurized air bearing structure is used and two control valves attached both side of the cylinder directly. To compensate nonlinear characteristics of control valves, linearized control input derived from the relation between control input and effective area of control valve, and dither signal are applied to the valve. The controller applied to the pneumatic cylinder driving apparatus is composed of a state feedback controller and a disturbance observer. Experimental results show that the effectiveness of the proposed method and position control error of $5{\mu}m$ accuracy could be obtained easily.

Thermal Analysis on Triple-Passage Heat Exchangers for a Continuous Hot-Steel Tube Cooling System

  • Ko, Bong-Hwan;Park, Seung-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.10-18
    • /
    • 2002
  • The objective of present study is to analyze a concentric triple-passage heat exchanger for an optimal design of a continuous hot steel-tube cooling system, where a hot-steel tube line is passing through an antioxidant gas with a constant speed. Velocities and temperatures of the inert gas flowing between inner and outer tubes are calculated theoretically for laminar and numerically for turbulent flow regimes. From their profiles Nusselt numbers and friction factors are calculated (or various ratios of inner/outer tube radii and relative velocities. With these Nusselt numbers triple-passage heat exchangers are investigated for their thermal characteristics. It is shown that heat transfer coefficients based on ratios of average heat fluxes from inner and outer tubes might result in great errors for the temperature distributions of the flows, since local heat transfer coefficients for flows through an annulus are dependent on local wall heat flux ratios.

A Sensitivity Analysis of Centrifugal Compressors Empirical Models

  • Baek, Je-Hyun;Sungho Yoon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1292-1301
    • /
    • 2001
  • The mean-line method using empirical models is the most practical method of predicting off-design performance. To gain insight into the empirical models, the influence of empirical models on the performance prediction results is investigated. We found that, in the two-zone model, the secondary flow mass fraction has a considerable effect at high mass flow-rates on the performance prediction curves. In the TEIS model, the first element changes the slope of the performance curves as well as the stable operating range. The second element makes the performance curves move up and down as it increases or decreases. It is also discovered that the slip factor affects pressure ratio, but it has little effect on efficiency. Finally, this study reveals that the skin friction coefficient has significant effect on both the pressure ratio curve and the efficiency curve. These results show the limitations of the present empirical models, and more resonable empirical models are reeded.

  • PDF