• Title/Summary/Keyword: Line Outage Distribution Factors(LODF)

Search Result 6, Processing Time 0.023 seconds

Fast Contingency Ranking Algorithm of Power Equipment (전력설비의 신속한 상정사고 선택 앨고리즘)

  • 박규홍;정재길
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.1
    • /
    • pp.20-25
    • /
    • 1998
  • This paper presents an algorithm for contingency ranking using line outage distribution factors(LODF) which are established by generation shift distribution factors(GSDF) from DC load flow solutions. By using the LODF, the line flow can be calculated according to the modification of base load flow if the contingency occur. To obtain faster contingency ranking, only the loading line more than 35[%](60[%] at 154[kV]) is included in the computation of Performance Index(PI). The proposed algorithm has been validated in tests on a 6-bus test system.system.

  • PDF

Contingency Ranking Using A Line Outage Distribution Factor (선로사고분배계수를 이용한 상정사고 선택)

  • Park, K.H.;Yoo, H.J.;Chung, J.K.;Kang, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.760-763
    • /
    • 1996
  • This paper presents an algorithm for the contingency ranking in a power system. The method utilizes line outage distribution factors(LODF) which are established from DC load flow solutions. The LODF are formulated using changes in network power generations to simulate the outaged line from the network. To abtain better ranking. one can take a line loading of 60% over into account in the computation of PI. The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

Contigency Ranking Technique Using Line Capacity Calculation Method (선로용량 산정법을 이용한 상정사고 선택)

  • Park, Kyu-Hong;Jung, Jai-Kil;Hyun, Seung-Bum;Lee, In-Yong;Jung, In-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.285-288
    • /
    • 2000
  • This paper presents a technique for contingency ranting using line capacity calculation method and outage distribution factors(LODF) which are established by generation shift distribution factors from DC load flow solutions. By using the LODF, the line flow can be calculated a ccording to the modification of base load flow if the contingency occur. To obtain contingency ranting, maximum power tansferred to the load is obtained when load impedance $Z_r$ equal to line impedance $Z_s$. ( $Z_r$/ $Z_s$=1) The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

Contigency Ranking Technique Using New Line Capacity (새로운 선로용량을 고려한 전력계통의 상정사고 선택)

  • Park, Kyu-Hong;Cho, Yang-Haeng
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.95-98
    • /
    • 2000
  • This paper presents a technique for contingency ranking using line capacity calculation method and outage distribution factors (LODF) which are established by generation shift distribution factors from DC load flow solutions. By using the LODF, the line flow can be calculated a ccording to the modification of base load flow if the contingency occur. To obtain contingency ranking, maximum power tansferred to the load is obtained when load impedance $Z_r$ equal to line impedance $Z_s$. The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

An Overload Alleviation Countermeasure using New Line Outage Distribution Factor (새로운 선로사고분배계수 알고리즘을 이용한 과부하 해소대책)

  • Park, Kyu-Hong;Chung, Jai-Kil;Kang, Dong-Gu;Kim, Jung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.588-590
    • /
    • 1995
  • This paper presents a new algorithm for the countermeasure to alleviate the line overloads in a power system. This method utilizes network sensitivity factors which are establised from DC load flow solutions. The line outage distribution factors(LODF) are formulated using changes in network power generations to simulate the outaged line from the network. The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

The ATC Calculation Method with Thermal Constraints and Voltage Stability Constraints (열적용량과 전압안정도를 고려한 ATC 계산 방법에 관한 연구)

  • Gim, Jae-Hyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.86-93
    • /
    • 2007
  • This paper proposes two fast calculation methods of ATC. These two methods evaluate ATC with thermal constraints(Thermal ATC) and ATC with voltage stability constraints(Voltage ATC) respectively. The ATC with thermal constraints was based on the linear incremental power flow to account for the line flow thermal loading effects when the n-1 security constraints were included. The ATC with voltage stability constraints used two-bus equivalents of the system to find the maximum load at a load bus before reaching the voltage stability problem. The methods were tested on the IEEE 30bus systems and the results obtained were compared with those found by some other methods.