• Title/Summary/Keyword: Limiting circuit

Search Result 253, Processing Time 0.021 seconds

Analysis on Current Limiting Characteristics of Transformer Type SFCL with Additionally Coupled Circuit

  • Lim, Seung-Taek;Ko, Seok-Cheol;Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.533-539
    • /
    • 2018
  • In this paper, the transformer type superconducting fault current limiter (SFCL) with additionally coupled circuit was suggested and its peak fault current limiting characteristics due to the fault condition to affect the fault current were analyzed through the fault current limiting tests. The suggested transformer type SFCL is basically identical to the previous transformer type SFCL except for the additional coupled circuit. The additional coupled circuit, which consists of the magnetically coupled winding to the primary and the secondary windings together with another superconducting element and is connected in parallel with the secondary winding of the transformer type SFCL, is contributed to the peak fault current limiting operation for the larger transient fault current directly after the fault occurrence. To confirm the fault current limiting operation of the suggested SFCL, the fault current limiting tests of the suggested SFCL were performed and its effective peak fault current limiting characteristics were analyzed through the analysis on the electrical equivalent circuit.

Analysis on Fault Current Limiting Characteristics of Flux-Lock Type SFCL Using Magnetic Flux Application Circuit (자기인가회로를 이용한 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Go, Ju-Chan;Lim, Seung-Taek;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.37-41
    • /
    • 2017
  • In this paper, the fault current limiting characteristics of the flux-lock type SFCL (superconducting fault current limiter) using magnetic application circuit were analyzed. The flux-lock type SFCL has the structure to install the magnetic application circuit, which can increase the resistance of HTSC ($high-T_C$ superconducting element comprising) the SFCL. To analyze the fault current limiting effect of the flux-lock type SFCL through the magnetic flux application circuit, the flux-lock type SFCL either with the magnetic flux circuit or without the magnetic flux circuit was constructed and the fault current limiting characteristics of the SFCL were compared each other through the short-circuit tests.

Analysis on Fault Current Limiting Characteristics According to Peak Current Limiting Setting of a Flux-Lock Type SFCL with Peak Current Limiting Function (피크전류제한 설정에 따른 피크전류제한 기능을 갖는 자속구속형 초전도한류기의 고장전류제한 특성 분석)

  • Ko, Seok-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.68-73
    • /
    • 2012
  • In this paper, the fault current limiting characteristics of a flux-lock type superconducting fault current limiter (SFCL) with peak current limiting function were analyzed through its short-circuit tests. The setting condition for the peak current limiting operation was derived from its electrical equivalent circuit, which was dependent on the inductance ratio between the third coil and the first coil. Through the analysis on the short-circuit tests for the flux-lock type SFCLs with the different inductance ratio between the third coil and the first coil, the setting value for the peak current limiting operation of the flux-lock type SFCL with peak current limiting function could be confirmed to be adjusted with the variation of the inductance ratio between the third coil and the first coil.

Comparison of HTS conductors for a DC resistive type fault current limiting module

  • So, Jooyeong;Lee, Seyeon;Choi, Kyeongdal;Lee, Ji-kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.39-43
    • /
    • 2019
  • The breaking of a circuit in DC grid could pose a challenge because of the absence of zero-crossing instant for both current and voltage when a fault occurs. An additional fault current limiting function will be very helpful for reducing the burden of the DC circuit breaker by limiting the fault current to a reasonable value. In this paper, we studied the overcurrent characteristics of several HTS conductors so that we could use the selected conductors for the basic design work of a resistive type fault current limiting module as a part of the circuit breaking system. According to the short-circuit test results, we suggested and compared two different basic design parameters of the HTS fault current limiting module, which will be connected in series to the DC circuit breaker.

Transient Fault Current Limiting Characteristics of a Transformer Type SFCL Using an Additional Magnetically Coupled Circuit

  • Lim, Seung-Taek;Lim, Sung-Hun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.42-45
    • /
    • 2017
  • In this paper, a transformer type SFCL (superconducting fault current limiter) using an additional magnetically coupled circuit was suggested. Its transient fault current limiting characteristics, due to the winding direction of additional coupled circuit, were analyzed through fault current limiting tests. The suggested transformer type SFCL was composed of the primary winding, and one secondary winding wound on the same iron core together with an additional magnetically coupled circuit. That circuit consists of the other secondary winding together with the other SC (superconducting) element connected in parallel with its other secondary winding. As one of the effective design parameters to affect the transient fault current of the SFCL, the fault current limiting tests of the suggested SFCL were carried out considering the winding direction of its additional coupled circuit. It was confirmed that, through the analysis on the fault current tests of the SFCL, the quench sequence of two SC elements comprising the suggested SFCL could be adjusted by the winding direction of the additional coupled circuit.

A Study on Development of Current Limiting solid-state AC circuit Breaker (한류형 반도체 교류 차단기 개발에 관한 연구)

  • Lee, Woo-Young;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.73-77
    • /
    • 1990
  • In this paper we describe the solid-state ac-circuit breaker which has the characteristic of both a half cycle circuit breaker and a current limiting circuit breaker. This circuit breaker has a current limiting resistor in order to surprises the fault current to a certain level and discharge the energe included in circuit inductor. We explain the effect of circuit parameter on transient phenomena of switch device by using EMTP and finally design the control circuit consisted synchronous closing circuit, over- current detecting circuit and sensing circuit of rate of rise of fault current.

  • PDF

Comparative Analysis on Current Limiting Characteristics of Hybrid Superconducting Fault Current Limiters (SFCLs) with First Half Cycle Limiting and Non-Limiting Operations

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.659-663
    • /
    • 2012
  • The application of large power transformer into a power distribution system was inevitable due to the increase of power demand and distributed generation. However, the decrease of the power transformer's impedance caused the short-circuit current of the power distribution system to be increase thus, the higher short-circuit current exceeded the cut-off ratings of the protective devices such as circuit breaker. To solve these problems, several countermeasures have been proposed to protect the power system effectively from higher fault current and the superconducting fault current limiter (SFCL) has been expected to be the promising countermeasure. In spite of excellent current limiting performances of the SFCL, on the other hand, the efforts to apply the SFCL into power system has been delayed due to both the limited spaces for the SFCL's installation and its long recovery time after the fault removal. In order to solve these problems, a hybrid SFCL, which can perform either first half cycle limiting of first half cycle non-limiting operation, has been developed by corporation of LSIS (LS Industrial System) and KEPCO (Korea Electric Power Corporation). In this paper, we tried to requirements hybrid SFCL by PSCAD/EMTDC. Simulation results of our analysis of the hybrid SFCL is that its accompanied the characteristics both the limit the fault current and quick recovery caused by the less impact from superconductor.

Interruption analysis of the SFCL-combined DC circuit breaker system using current-limiting technology

  • Kim, Jun-Beom;Jeong, In-Sung;Choi, Hye-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.30-34
    • /
    • 2016
  • In this study, a SFCL-combined DC circuit breaker system was proposed by applying the current-limiting technology for DC circuit breaking. The SFCL-combined circuit breaker system consists of a mechanical DC circuit breaker combined with superconductors. To ensure the reliable structure and operation of the SFCL-combined circuit breaker system, a simulation grid was designed using the EMTDC/PSCAD program, and simulation was conducted. The results showed that the SFCL-combined DC circuit breaker system with superconductors limited the maximum fault current by 37%. In addition, the burden on the DC circuit breaker was decreased by 87%.

A Novel DC Solid-State Circuit Breaker for DC Grid (DC Grid를 위한 새로운 구조의 DC Solid-State Circuit Breaker)

  • Kim, Jin-Young;Kim, In-Dong;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.368-376
    • /
    • 2012
  • According to developed distributed generators, Solid State Circuit Breaker(SSCB) is essential for high power quality of DC Grid. In this paper, a simple and new structure of DC SSCB with a fast circuit breaker and fault current limiter is proposed. It can help to choice low specification of elements because of the limiting of fault current and achieve economic efficiency for minimizing auxiliary SCRs. Also all of SCRs have little switching loss because they operate under ZVS and ZCS. Through simulations and experiments of short-circuit fault, the performance characteristic of proposed circuit is verified and a guideline is so suggested that the DC SSCB is applied for a different DC grid using formulas.

The Analysis of Current Limiting Performance in a High-$T_c$ Superconductor using Flux-Lock Concepts

  • 임성훈;최효상;김영순;이성룡;한병성
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.229-234
    • /
    • 2002
  • In this paper, we analyzed the fault current performance in a $high-T_{c}$ superconductor(HTS) which was installed on flux-lock reactor with an external magnetic field coil covering the HTS. In this HTS fault current limiter using flux-lock concepts, the initial limiting current level can be controlled by adjusting the inductance of the coils. Furthermore, the current limiting characteristics of $high-T_{c}$ superconducting FCL can be improved by applying the external magnetic field into the $high-T_{c}$ superconductor. This paper discusses current limiting performance according to the inductance of the coil 1 in two cases with ac magnetic field coil or not and suggests the methods to improve the current limiting factor $P_{limit}$, which is defined as the ratio of the limited current $I_{FCL}$ at the current limiting phase to the prospective short -circuit current $I_{PSC}$.TEX> PSC/.

  • PDF