• Title/Summary/Keyword: Limestone formation

Search Result 166, Processing Time 0.02 seconds

Conodont Biostratigraphy of the Middle Carboniferous System in the Taebaek Area, Kangwondo, Korea (강원도 태백 지역의 중부 석탄계 코노돈트 생층서)

  • Park, Soo-In;Sun, Seung-Dae
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.558-570
    • /
    • 2001
  • The Middle Carboniferous Manhang and Geumcheon Formations exposed in the Taebaek area, Kangwondo, Korea consist of sandstones and shales with some intercalation of limestone beds. The limestones of the formations contain abundant conodonts and other fossils. The purpose of this study is (1) to investigate the conodont fauna, (2) to assign conodont biozones of the Manhang and Geumcheon Formations, and (3) to refine their geologic age more exactly. The conodonts of the Manhang and Geumcheon Formations are 6 genera distributed into 11 species. Conodonts found from limestones of the Manhang Formation are Idiognathodus delicatus, Hindeodus minutus, Streptognathodus sp., Diplognathodus coloradoensis, N. bothorops, and N. medexultimus. This conodont fauna can be assigned to the Neognathodus bothrops Zone. This conodont biozone indicates that the geologic age of the Manghang Formation is the Atokan stage of the Middle Carboniferous Period. Conodonts came from limestones of the Geumcheon Formation are Idiognathodus delicatus, N. medexultimus, N. roundyi, N. dilatus, Diplognathodus edentulus, Hindeodus minutus, Streptognathodus elegantulus, and Gondolella bella. These conodonts permit them to be assigned to the Neognathodus roundyi Zone. This Conodont biozone indicates that the geologic age of the Geumcheon Formation is the Desmoinesian stage of the Middle Carboniferous Period.

  • PDF

Physical Properties of Major Bedrocks in Chungju-Goesan Area as Aggregates (충주-괴산일대에서 산출되는 주요 기반암의 골재로서의 물성특징)

  • Byoung-Woon You;Jaehyung Yu
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.649-659
    • /
    • 2022
  • This study examined the granite, quartzite, phyllite, schist, and gneiss as aggregate resources among the original rock distributed in the Chungju-Goesan area. The granite distributed in the study area is mainly composed of Jurassic biotite granite, and the quartzite layer is from the Daehyangsan quartzite Formation distributed on the upper part of the Gyemyeongsan Formation and the Hyangsan-ri dolomitic limestone Formation. In addition, phyllite is pophyrytic phyllite-schist from the Hwanggangri Formation of the Okcheon group, schist is chlorite schist, from the Munjuri Formation of the Okcheon group, and gneiss is porphyroblastic gneiss which is the upper part of the Seochangri Formation. Aggregate quality evaluation factors of these rocks included fineness modulus, absorption, unit weight, absolute dry density, solid content, porosity, resistance to abrasion, and soundness. In the case of granite, it was found to be partially unsatisfactory in terms of unit weight, solid content, porosity, and resistance to abrasion. Gneiss was found to be out of the standard values in resistance to abrasion and schist in porosity and solid content. As for the overall quality of aggregate resources, it was analyzed that quartzite, gneiss, and phyllite showed excellent quality. Aggregate quality tests are performed simply for each rock, but the rock may vary depending on the morphology of the mineral. Therefore, when analyzing and utilizing the quality evaluation of aggregate resources, it will be possible to use them more efficiently if the rock-mineralological research is performed together.

Carbonate Biomineralization Using Speleothems and Sediments from Baekasan Acheon Cave (Limestone Cave) in Hwasun-gun, Jeollanam-do, South Korea (전남 화순군 백아산 아천동굴(석회동굴) 동굴생성물을 이용한 생광물화작용 연구)

  • Kim, Yumi;Seo, Hyunhee;Jo, Kyoung-nam;Jung, Dayae;Shin, Seungwon;Huh, Min;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • Baekasan Acheon cave located in Hwasun-gun, Jeollanam-do is a natural limestone cave only found in this province. In this study, the mineralogical and geochemical characteristics of speleothems collected from Baekasan Acheon cave were identified and the capability of carbonate mineral formation by aerobic microorganisms enriched from the cave and the mineralogical and geochemical characteristics of carbonate minerals formed by the microorganisms were investigated. The samples of sediments (clay) and speleothems (shelfstone and cave coral) were collected at three sites in the cave. The samples of shelfstone and cave coral were identified mainly as carbonate mineral, Mg-rich calcite, and clay minerals were composed of quartz, muscovite, and vermiculite by X-ray diffraction (XRD) analysis. To cultivate the carbonate forming microorganisms, parts of the sediment and speleothems were placed in D-1 medium containing urea, respectively, and the growth of microorganisms was observed under the aerobic condition at room temperature. The capability of carbonate mineralization of the cultured Baekasan Acheon cave microorganisms was examined through adding 1% (v/v) of the cultured microorganisms and calcium sources, Ca-acetate or Ca-lactate, into the D-1 medium. XRD analysis showed that the microorganisms cultured in cave deposits formed calcium carbonate ($CaCO_3$) under all conditions, and these microbial carbonate minerals included calcite and vaterite. The morphological characteristics and chemical composition of biologically formed minerals were observed by SEM-EDS showed various crystal forms such as rhomboid, spherical, perforated surface with Ca, C, and O of major chemical components. The existence of such microorganisms in the cave can contribute the formation of carbonate minerals, and it is likely to affect the geochemical cycles of carbon and calcium in the cave.

Reply to the Article "On the Geological Age of the Ogcheon Group" by C.M. Son ("옥천층군(沃川層群)의 지질시대(地質時代)에 관(關)하여"에 대(對)한 회답(回答))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.3 no.3
    • /
    • pp.187-191
    • /
    • 1970
  • There is a discrepancy in opinion regarding geological age of Okchon system among professor C.M. Son and the writer who represent the two school of thought in precambrian stratigraphy in Korea as a whole. This brief article is a reply to the recent paper by C.M. Son titled "On the geological age of the Ogcheon Group" The discrepancy in opinion on the age Okchon system is based mainly on the difference in opinion about the age of Majeonri, Hwachonri and Kounri formations, the age of which professor Son believes as post-ordovician and regards them as a part of the Great Limestone series and the base of the Ogchon Group. The writer is in a opinion that Okchon system belong to precambrian in age and Majeonri-, Hwachonri-, and Kounri formations are the same formation composing an upper member of Okchon system. The writer's opinion is based on the facts that i) stratigraphical sequence of Okchon system established by the writer was accepted by C.M. Son who used believed the reverse order in sequence and confessed his mistake in his article; and ii) regional stratigraphy and structure strongly support's to writer's opinion. The writer pointed out and discussed in this paper various facts which do not support Son's idea by any means.

  • PDF

우전탄좌 지질조사 보고서

  • 이돈영;유양수
    • Journal of the Korean Professional Engineers Association
    • /
    • v.5 no.17
    • /
    • pp.3-10
    • /
    • 1972
  • This report is the result of the basic geologic investigation for the purpose of preparing the long-term development program of the U-jeon Consolidated Coal kline. The Consolidated Coal Mine is located at Gujeol-ri, Wangsan-myeon, Myeongju-gun, and Yucheon-ri, Bug-myeon, Jeongseon-gun, Gan-gweon Province (128$^{\circ}$ 43′10.4"-128$^{\circ}$ 46′10. 4"of east long-ititude, 37$^{\circ}$ 30′-37$^{\circ}$ 33′ of north latitude). This region, the western part of Taebaek mountain range, shows a ragged mountinous feature. Formations of the Pyeongan System of Paleozoic Era are distribu ted in the region with the surrounding Great Limestone Series of Joseon System which covers the south-eastern part of the region. The Pyeongan System is divided into four formations, namely, the Hongjeom, the Sadong, the Gobang and the Hongam, in ascending order. The sadong Formation intercalates several coal beds, and two coal beds out of them are minable. The coal beds are variable in thickness, having the repeated swelled or poket and the pinched parts, which suggest all intense disturbance caused by folding. The heat value of the coal is 5, 500cal. on the average. The total amount of coal reserves of the U-jeon consolidated Coal Mine is estimated at about thirty million metric tons.

  • PDF

Mg-skarn Minerals from Magnetite Deposits of the Janggun Mine, Korea (장군광산(將軍鑛山)의 자철석광상(磁鐵石鑛床)에서 산출(産出)되는 Mg-스카른광물(鑛物))

  • Lee, Chan Hee;Song, Suckhwan;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.11-21
    • /
    • 1996
  • The first Mg-skarn minerals are found from magnetite ore deposits of the Janggun mine, Korea. The skarn minerals are composed of mostly chondrodite, olivine, chlorite, serpentine, phlogophite, talc, apatite, magnesite, dolomite, siderite and trace amount of clinopyroxene, amphibole, garnet, wollastonite associated with magnetite, pyrrhotite and pyrite. The skarn zone is developed in the magnetite deposits at the contact of the Mg-rich Janggun Limestone Formation and the Chunyang granite. The chondrodites are columnar and radial shapes and some of them show twins. The chemical compositions of twinning-type chondrodites have high FeO (4.63 to 5.6 wt%), MnO (0.26 to 0.46 wt%) and low MgO (55.02 to 56.18 wt%) relative to the radial-type chondrodites. Twinning in chondrodite has been formed in close relation to substitution between Mg and Fe + Mn in humite solid solution. Temperature, $-logfo_2$ and $X_{CO2}$ during the skarn stage of magnetite deposits from the Janggun mine range from 395 to $430^{\circ}C$, from 30.5 to 31.2 atm and from 0.06 to 0.09, respectively.

  • PDF

Electrical Resistivity Survey on the Geolgical Structure of the Bonghwajae Area in the Okchon Zone (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資原)에 관(關)한 연구(硏究) -봉화재 지역(地域)에 대(對)한 전기비저항탐사(電氣比抵抗探査)-)

  • Min, Kyung Duck;Kim, Chang Ryol;Yun, Chun Sung;Chung, Seung Hwan
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.131-137
    • /
    • 1988
  • Geological and electrical resistivity surveys were carried out to investigate subsurface geology and geologic structure of the Bonghwajae area in the Okchon zone. Pseudosections of the apparent electrical resistivity distribution along the three survey lines were obtained by using dipole-dipole electrode array method, and models of subsurface geology and geologic structure by using two dimensional finite difference method. The Bonghwajae fault zone exists around Bonghwajae area in the north-south direction, and is a boundary between Okchon Group and Choson Supper Group. Metabasite and hornblende gabbro intruded along the Bonghwajae fault zone remaining two fracture zones with low resistivity value of 20 ohm-m and widths of about 100m and 70-300m. They strike nearly N-S and dip westward with a high angle of $60-70^{\circ}$. Sochangri fault with a width of about 160m exists between Jisogori and Bonghwajae, by which Bonghwajae fault zone is displaced about 1km in the east-west direction. Hornblende gabbro whose electrical resistivity value is in the range of 5000-8000 ohm-m intruded the metabasite of 2000-4500 ohm-m after the Sochangri fault had formed. Great Limestone Group is widely distributed in the east of Bonghwajae fault zone, and interbeds so called Yongam formation of graphitic black slate with an extremely low electrical resistivity value of 2 ohm-m.

  • PDF

Geological Structures of the Southern Jecheon, Korea: Uplift Process of Dangdusan Metamorphic Complex and Its Implication (옥천대 제천 남부의 지질구조: 당두산변성암복합체의 상승과정과 그 의미)

  • Kihm, You-Hong;Kim, Jeong-Hwan;Cheong, Sang-Won
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.302-314
    • /
    • 2000
  • Keumseong area in the southern part of the Jecheon city, the Ogcheon Belt, consists of Precambrian Dangdusan Metamorphic Complex, Dori Formation of the Choseon Supergroup, and Jurassic Jecheon Granite. The Dangdusan Metamorphic Complex consists of quartz schist, mica schist. quartzite and pegmatite. The Dori Formation is composed of mainly laminated limestone. The rocks in the study area have been undergone at least three phases of deformations since Paleozoic period. The Dangdusan Metamorphic Complex is outcrop at three areas in the study area, which are exposed along the faults and occurred as inlier within the Dori Formation. Previous authors interpreted the uplift of the Dangdusan Metamorphic Complex by the Dangdusan Fault, but we could not find any evidences related to the Dangdusan Fault. Thus, we interpret the uplift of the Dangdusan Metamorphic Complex due to the D$_2$ Weolgulri and Dangdusan thrusts and post-D$_2$ Jungbodeul, Kokyo and Jungjeonri faults. The uplift of the Busan Metamorphic Complex to the west of the study area was interpreted by ductile deformation. However, the Dangdusan Metamorphic Complex is formed by brittle thrusts and faults in this study. According to deformation sequence, the characters of deformations in the Choseon and Ogcheon suprergroups had been changed from ductile to brittle deformations through the time. Therefore, we interpret the Dangdusan Metamorphic Complex is exposed later than the Busan Metamorphic Complex.

  • PDF

Deposional Age of the Bangnim Group, Pyeongchang, Korea Constrained by SHRIMP U-Pb Age of the Detrital Zircons (쇄설성 저어콘의 SHRIMP U-Pb 연령으로 한정한 평창지역 방림층군의 퇴적시기)

  • Gwak, Mu-Seong;Song, Yong-Sun;Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • We determined SHRIMP U-Pb ages of the detrital zircons separated from the Bangnim Group of the Pyeongchang area to constrain its depositional age. As the result, the minimum age group yielded $^{206}Pb/^{238}U$ age of $450.3{\pm}4.2Ma$ (n=3), suggesting depositional age younger than Late Ordovician. Therefore, the Bangnim Group cannot be a Precambrian sedimentary formation but is younger than Myobong Formation of the Early Paleozoic Joseon Supergroup of the Taebaeksan basin. Such a depositional age implies that the Bangnim Group and structurally overlying Jangsan Quartzite should be in fault contact, suggesting that the Jangsan Quartzite, Myobong Formation and Pungchon Limestone thrusted over the Bangnim Group. The zircon U-Pb age distribution pattern of the Bangnim Group resembles those of the Early Paleozoic Myobong and Sambangsan Formations of the Taebaeksan basin and seemingly Middle Paleozoic Daehyangsan Quartzite and the Taean Formation. However, detrital zircon U-Pb age patterns of the Late Paleozoic Pyeongan Supergroup are quite distinct from them, suggesting drastic change in provenance of the detrital zircon supply. Therefore, we suggest that the Bangnim Group was deposited before the Pyeongan Supergroup.

Characteristics and Distribution Pattern of Carbonate Rock Resources in Kangwon Area: The Gabsan Formation around the Mt. Gachang Area, Chungbuk, Korea (강원 지역에 분포하는 석회석 자원의 특성과 부존환경: 충북 가창산 지역의 갑산층을 중심으로)

  • Park, Soo-In;Lee, Hee-Kwon;Lee, Sang-Hun
    • Journal of the Korean earth science society
    • /
    • v.21 no.4
    • /
    • pp.437-448
    • /
    • 2000
  • The Middle Carboniferous Gabsan Formation is distributed in the Cheongrim area of southern Yeongwol and the Mt. Gachang area of Chungbuk Province. This study was carried out to investigate the lithological characters and geochemical composition of the limestones and to find out controlling structures of the limestones of the formation. The limestones of the Gabsan Formation are characterized by the light gray to light brown in color and fine and dense textures. The limestone grains are composed of crinoid fragments, small foraminfers, fusulinids, gastropods, ostracods, etc. Due to the recrystallization, some limestones consist of fine crystalline calcites. The chemical analysis of limestones of the formation was conducted to find out the contents of CaO, MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$. The content of CaO ranges from 49.78-60.63% and the content of MgO ranges from 0.74 to 4.63% The contents of Al$_2$O$_3$ and Fe$_2$O$_3$ are 0.02-0.55% and 0.02${\sim}$0.84% , respectively. The content of SiO$_2$ varies from 1.55 to 4.80%, but some samples contain more than 6.0%. The limestones of the formation can be grouped into two according to the CaO content: One is a group of which CaO content ranges from 49.78 to 56.26% and the other is a group of which CaO content varies from 59.36 to 60.38%. In the first group, the contents of Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ range very irregularly according to the CaO content. In the second group, the values of MgO, Al$_2$O$_3$, Fe$_2$O$_3$ and SiO$_2$ are nearly same. Detailed structural analysis of mesoscopic structures and microstructures indicates the five phase of deformation in the study area. The first phase of deformation(D$_1$) is characterized by regional scale isoclinal folds, and bedding parallel S$_1$ axial plane foliation which is locally developed in the mudstone and sandstone. Based on the observations of microstructures, S$_1$ foliations appear to be developed by grain preferred orientation accompanying pressure-solution. During second phase of deformation, outcrop scale E-W trending folds with associated foliations and lineations are developed. Microstructural observations indicate that crenulation foliations were formed by pressure-solution, grain boundary sliding and grain rotation. NNW and SSE trending outcrop scale folds, axial plane foliations, crenulation foliations, crenulation lineations, intersection lineations are developed during the third phase of deformation. On the microscale F$_3$ fold, axial plane foliations which are formed by pressure solution are well developed. Fourth phase of deformation is characterized by map scale NNW trending folds. The pre-existing planar and linear structures are reoriented by F$_4$ folds. Fifth phase of deformation developed joints and faults. The distribution pattern of the limestones is mostly controlled by F$_1$ and F$_4$ folds.

  • PDF