• Title/Summary/Keyword: Limestone Calcination Characteristics

Search Result 24, Processing Time 0.024 seconds

Effects of Physicochemical/Mineralogical Characteristics of Limestones and Porosity after Calcination on Desulfurization Reactivities

  • Baek, Chul-Seoung;Seo, Jun-Hyung;Cho, Jin-Sang;Cho, Kye-Hong;Han, Choon
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.34-42
    • /
    • 2016
  • Characteristics of wet flue gas desulfurization and in-furnace desulfurization of domestic and overseas limestone with different crystallinity and crystalline size are studied in this article. Properties of desulfurization were evaluated in relation to physicochemical/ mineralogical characteristics, degree of pore formation for different calcination temperatures and TNC(total neutralizing capability). TNC of domestic high crystalline limestone was lower than that of overseas one. On the other hand, the porosity after calcination was shown to be relatively high for domestic limestone, which had high initial rates of desulfurization reactions in-furnace. Based on low pore formation and porosity with high TNC of crystalline high-Ca limestones compared to macrocrystalline ones, the former are preferred for wet desulfurization processes.

A Study on the Calcination Characteristics of Jeongseon District's Limestone (정선 지역 석희석의 소성특성 연구)

  • Lee, Jae-Jang;Choi, Jae-Suk;Roh, Beum-Sik;Moon, Young-Bae
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.279-283
    • /
    • 2000
  • Lime is one of the world's most useful chemicals and manufactured in various types of kilns, using various fuels. Quicklimes vary in reactivity with water due to variations in the time and temperature calcining process and type of kiln used. Careful attention and control of time and temperature in the calcining process is necessary to insure a highly reactive lime. Excess time and temperature will cause the lime to be over burned. The highest reactivity of quicklime is obtained by calcination of limestone in the particle size of 0.1cm~2cm, calcination temperature of $1000^{\circ}C$, calcination time 90min. It was found by the scanning electron microscopes that pores of quick lime is reducted if the soft burned quick lime is heated continually.

  • PDF

A study on the characteristics of limestone calcination and sulfation in a fluidized bed (유동층반응기를 이용한 석회석소성 및 황화반응 특성 연구)

  • Cho, Sang-Won;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.3 no.1
    • /
    • pp.106-113
    • /
    • 1997
  • The objectives of this study were to investigate the characteristics of limestone calcination and sulfation in a fluidized bed reactor with bed temperature and air velocity. The experimental results were presented as follows ; First, the bed temperature had a great influence on the calcination and the sulphur retention of limestone and paper sludge. In paper sludge, the optimum conditions in calcination and desulfurization temperature was at $800^{\circ}C$ and in natural limestone, that was at $850^{\circ}C$ or $900^{\circ}C$. Second, as air velocity increased, the specific surface area of particles decreased. But the difference of surface area according to air velocity was not too large. The specific surface area of paper sludge was larger than that of natural limestone. Third, as air velocity increased, the absorbed amount of sulfur dioxide decreased. And the absorbed amount of sulfur dioxide by paper sludge was larger than that of by natural limestone. Therefore, we knew that paper sludge was excellent absorbent and bed temperature had a great important variable on the calcination and sulphur retention in a fluidized bed.

  • PDF

Study on Calcination Characteristics of Limestones for In-Furnace Desulfurization in Oxy-Fuel Combustion (순산소연소 조건에서 석회석의 소성특성 및 로내탈황에 관한 연구)

  • An, Young-Mo;Jo, Hang-Dae;Choi, Won-kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.371-377
    • /
    • 2009
  • In oxy-fuel combustion, $CO_2$ concentration in the flue gas may be enriched up to 95% owing to the gas recirculation. Under the high $CO_2$ concentration, the calcination characteristic of limestone is different from that of the conventional air combustion system. In this study, three types of limestone taken from different regions in Korea were used as $SO_2$ absorbent and their calcination characteristics depending on calcination temperature were investigated. The experiments were performed to examine the effects of operating variables such as absorbent species, reaction temperatures on the $SO_2$ removal efficiency and reacted limestone particles were captured to examine the sulfur contents. The degree of calcination and the specific surface area increased with calcination temperature and $SO_2$ removal efficiency increased with reaction temperature. The results showed remarkable difference in $SO_2$ removal efficiencies between the limestone types. The sulfur content of the reacted limestone with the highest $SO_2$ removal efficiency was about 10%.

Calcination Characteristics of High-purity Limestone from the Pungchon Limestone in the Quicklime Manufacture (생석회 제조 공정에서의 풍촌층 고품위 석회석의 소성 특성)

  • Noh, Jin-Hwan;Lee, Hyun-Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.209-224
    • /
    • 2008
  • Various types of high-purity limestone, which occurred in the Pungchon Formation, are examined to understand applied-mineralogical factors controlling their calcination characters with respect to the ore characters. To do this work, systematic characterization and determination were carried out for the limestone ores and their calcination products in a fixed heating condition, and the results were correlated and discussed. During the calcination experiment, a phase transition from calcite to quicklime begins to occur selectively in the physical weak zones such as grain boundary, cleavage and twin planes. All the fabrics of original limestones are preserved in the resultant quicklime. In addition, crystallinity of the quicklime was advanced, as the aging time of calcination was increased. Major controlling factors on the calcination effects of the high-purity limestone are elucidated to be the degree of development of cleavage and twin, together with crystallinity and textures in the limestone ore. Especially, lower crystallinity and dense interlocking fabrics obviously play advantageous role in all the calcination characters. But the development of cleavage and twin affects negatively on the calcination characters on account of favoring decrepitaion of quicklime in the lime manufacturing. Thus, the high-purity limestones characteristic of marble fabrics and relatively lower crystallinity are comparatively advantageous for the uses of lime manufacture.

Mineralogical Changes of Oyster Shells by Calcination: A Comparative Study with Limestone (소성에 따른 굴패각의 광물학적 특성변화: 석회석과의 비교 연구)

  • Lee, Jin Won;Choi, Seung-Hyun;Kim, Seok-Hwi;Cha, Wang Seog;Kim, Kangjoo;Moon, Bo-Kyung
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.485-492
    • /
    • 2018
  • About 300 thousand tones of oyster shells are produced annually and, thus, their massive recycling methods are required. Recently, a method, utilizing them as wet desulfurization materials after removal of organic matters and changing $CaCO_3$ phase into CaO through calcination, is under consideration. This study investigates the mineralogical changes (specific surface area, phase changes, surface state, etc.) of oyster shells by calcination and their characteristics were compared with those of limestone. Uncalcined oyster shells showed the higher specific surface area than limestone because the former are composed of platy and columnar structures. In contrast, investigated limestone showed a dense structure. The phase change of oyster shells occurred at lower temperature than that of limestone. The specific surface area of oyster shell decreased significantly after calcination while limestone depicted a drastic increase. Small amount of Na contained in oyster shell was suggested as the cause of this phenomenon; in that, it acted as a flux causing melting and sintering of oyster materials at lower temperature. Because of this, an additional phenomenon was observed that a part of shell materials remained untransformed even at higher calcination temperature and after longer treatment period due to the sintered surface, which covers the rest parts. Further studies investigating the effect of this phenomena from the perspective of desulfurization is required.

The Attrition and Calcination Characteristics of Domestic Limestones for In-Situ Desulfurization in Circulating Fluidized Bed Boilers (순환유동층 로내 탈황을 위한 국내 석회석의 마모 및 소성 특성)

  • Kim, Ye Bin;Kang, Seo Yeong;Seo, Su Been;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.687-694
    • /
    • 2019
  • In order to investigate the behavior of limestones which have been usually used for in-situ desulfurization reaction in circulating fluidized bed combustors, the attrition characteristics and calcination reactions of domestic limestones were analyzed in this study by using a thermogravimetric analyzer and an ASTM D5757-95 attrition tester. The average size distribution of limestones in circulating fluidized bed boilers have to be changed due to the attrition of particle-particle and particle-reactor wall and the calcination reaction. Domestic limestones might be used in commercial circulating fluidized bed boilers, but the attrition behaviors and particle size changes of limestones were varied. In calcination experiments at $850^{\circ}C$, the calcination reaction were varied with limestone samples. The calcination reaction time increased with an increase of particle size. Also, fine particles generated the attrition test of calcined limestone was 20% higher than those generated the attrition test of original limestone.

An Exploratory Research on PCC Application of Crystalline Limestone: Effects of Limestone Crystallographic Characteristicson Hydraulic Activity

  • Yang, Ye-Jin;Jegal, Yu-Jin;Nam, Seong-Young;Kim, Jin;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.115-120
    • /
    • 2014
  • Quicklime(CaO) is generally obtained through the calcination of limestone, the main component of which is calcium carbonate($CaCO_3$). Quicklime generates high-temperature heat when reacting with water, forming slaked lime($Ca(OH)_2$). The industrial sectors for limestone are determined by the hydraulic activity of slaked lime, which is obtained by measuring temperature changes during the hydration reaction. Accordingly, this study examined the different crystallographic characteristics of limestone as affected by the geological origins of the regions where the limestones were produced, and how these characteristics affected hydraulic activity. Six limestone samples were collected from the Jecheon and Cheongsong areas and the hydraulic activities were measured in accordance with KS E 3077. The results indicate that limestone produced in the Cheongsong area, recrystallized through metamorphism caused by hydrothermal alteration, hada larger grain size of calcite than that of the Jecheon area, and displays a tendency of changing to marble. Limestone from the Cheonsong area showed more radical reaction in the early stage of hydration compared to that ofthe Jecheon area. In addition, it was revealed that limestone having more impurities like $SiO_2$ have lower hydraulic activity.

A Study on the Removal Reaction Characteristics of Sulfur Dioxide (대기오염 물질인 $SO_2$ 제거반응 특성 연구)

  • 강순국;정명규
    • Journal of Environmental Science International
    • /
    • v.4 no.1
    • /
    • pp.41-52
    • /
    • 1995
  • The effects of reaction temperature, SO2 and CO2 concentration in an air gas stream, particle sizes of limestone on the reactivity and capacity of SO2 removal have been determined in a thermogravimetric analyser(TGA). The apparent reaction order of sulfation reaction of pre-calcined lime(CaO) with respect to SO2 is found to be close to unity. The apparent activation energies are found to be 17,000 kcal/kmol for sulfation of pre-calcined lime and 19,500 kcal/kmol for direct sulfation of limestone(CaCO3). The initial sulfation reaction rate of pre-calcined lime increases with increasing temperature, whereas the sulfur capture capacity exhibits a maximum value at 90$0^{\circ}C$. In direct sulfation of limestone, sulfation reactivity and sulfur capature capacity of sorbent increase with increasing temperature and decreasing CO2 concentration in a gas bulk stream. The main pare of pre-calcined lime is shifted to the larger pore sizes and pore volume decreases with increasing sulfation time and temperature. The surface area of lime decreases with increasing calcination temperature under an air atmosphere, whereas is yearly constant under a CO2(5, 10%) atmosphere in a gas stream.

  • PDF

Manufacture of Precipitated Calcium Carbonate from Pungchon Limestone (풍촌지역 석회석을 이용한 침강성탄산칼슘의 제조)

  • Lee, Jae-Jang;Park, Jong-Lyuck
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.251-256
    • /
    • 2001
  • This research is focused on an improvement of additional value of high grade limestone. To obtain the basic data of precipitated calcium carbonate(PCC), studies of physical properties of limestone, calcination and hydration characteristics, the characteristics to manufacture quick lime, hydrated lime, ground calcium carbonate and precipitated calcium carbonate were performed. In the carbonation process, formation of rombohedral must be kept under $10^{\circ}C$ for reaction. Although the temperature of reaction of lime milk was limited under $30^{\circ}C$ for a colloidal PCC manufacture, over $50^{\circ}C$ for spindle type PCC. The recommended reaction conditions for colloidal PCC are $20^{\circ}C$ of reaction temperature, 4% of $Ca(OH)_2$ concentration, 1000rpm of stirring rate and 200ml/min of $CO_2$ gas flow rate.

  • PDF