• 제목/요약/키워드: Lignin peroxidase

검색결과 101건 처리시간 0.035초

리그닌의 분해가 우수한 Streptomyces halstedii ssp. scabies SA1-27과 Streptomyces violaceusinger C1-6에서 생성되는 효소들에 관한 연구 (The Study of Enzymes Produced by Streptomyces halstedii ssp. scabies SA1-27 and Streptomyces violaceusinger C1-6 Which Have Good Lignolytic Activity)

  • 김태전
    • 대한임상검사과학회지
    • /
    • 제38권2호
    • /
    • pp.87-93
    • /
    • 2006
  • This study was done to know a kind and change (transition) of enzymes produceed by Streptomyces halstedii ssp. scabies SA1-27 and Streptomyces violaceusinger C1-6 which showed good lignolytic activity and a good decolorization ratio of remazol brilliant blue R(RBBR) dye. These strains were isolated from soil and identified by the author. The basal medium containg 0.2% glucose was used to measure enzyme activity, Lignin peroxidase 1 (Lip 1) was measured by the methods of Choi, and Bourbonnais and Paice. Lignin peroxidase 2 (Lip 2) was measured by the methods of Ishida et al and Ramachandra et al using 2.4-dichlorophenol(2.4 DCP), manganese peroxidase(Mnp), veratryl alcohol oxidase (VAO), and laccase. They were measured by each of the methods of Choi and Paszczynski et al, and Bourbonnais and Paice, and De Jong et al. In the results, the kind of enzymes produced by Streptomyces halstedii ssp. scabies SA1-27 were Lip 1, Lip 2, VAO, and laccase, and their activities indicated the highest value as each 4.95 nmol/mg protein, $8.45({\times}100^{-3})unit$, 10.25 nmol/mg protein, 9.20 nmol/mg protein on the sixth day of the culture and decreased gradually over time. The kind of enzymes produced by Streptomyces violaceusinger C1-6 were Lip 1, Lip 2, Mnp, VAO, and laccase, and their activities indicated the highest value as each 4.90 nmol/mg protein, $13.85({\times}100^{-3})unit$, 3.10 nmol/mg protein, 11.30 nmol/mg protein, 4.45 nmol/mg protein on the sixth day of the culture and decreased gradually over time. Consequently, the author knew the fact that there were few differences in the kind and quantity of enzymes produced by the two Streptomyces strains, but all enzyme activities indicated the highest value on the sixth day of the culture and decreased gradually over time.

  • PDF

Trametes villosa Lignin Peroxidase (TvLiP): Genetic and Molecular Characterization

  • Carneiro, Rita Terezinha de Oliveira;Lopes, Maiza Alves;Silva, Marilia Lordelo Cardoso;Santos, Veronica da Silva;Souza, Volnei Brito de;Sousa, Aurizangela Oliveira de;Pirovani, Carlos Priminho;Koblitz, Maria Gabriela Bello;Benevides, Raquel Guimaraes;Goes-Neto, Aristoteles
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.179-188
    • /
    • 2017
  • White-rot basidiomycetes are the organisms that decompose lignin most efficiently, and Trametes villosa is a promising species for ligninolytic enzyme production. There are several publications on T. villosa applications for lignin degradation regarding the expression and secretion of laccase and manganese peroxidase (MnP) but no reports on the identification and characterization of lignin peroxidase (LiP), a relevant enzyme for the efficient breakdown of lignin. The object of this study was to identify and partially characterize, for the first time, gDNA, mRNA, and the corresponding lignin peroxidase (TvLiP) protein from T. villosa strain CCMB561 from the Brazilian semiarid region. The presence of ligninolytic enzymes produced by this strain grown in inducer media was qualitatively and quantitatively analyzed by spectrophotometry, qPCR, and dye fading using Remazol Brilliant Blue R. The spectrophotometric analysis showed that LiP activity was higher than that of MnP. The greatest LiP expression as measured by qPCR occurred on the $7^{th}$ day, and the ABSA medium (agar, sugarcane bagasse, and ammonium sulfate) was the best that favored LiP expression. The amplification of the TvLiP gene median region covering approximately 50% of the T. versicolor LPGIV gene (87% identity); the presence of Trp199, Leu115, Asp193, Trp199, and Ala203 in the translated amplicon of the T. villosa mRNA; and the close phylogenetic relationship between TvLiP and T. versicolor LiP all indicate that the target enzyme is a lignin peroxidase. Therefore, T. villosa CCMB561 has great potential for use as a LiP, MnP, and Lac producer for industrial applications.

Biodegration of Pentachlorophenol by White Rot Fungi under Ligniolytic and Nonligninolytic Conditions

  • Ryu, Won-Ryul;Shim, Seong-Hoon;Jang, Moon-Yup;Heon, Yeong-Joong;Oh, Kwang-Keun;Cho, Moo-Hwan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권3호
    • /
    • pp.211-214
    • /
    • 2000
  • The roles of lignin peroxidase, manganese peroxidase, and laccase were inverstigated in the biodegration of pentachlorphenol (PCP) by several which rot fungi. The disappearance of pentachlorophenol from cultures of wild type strains, P. chrysosporium, Trametes sp. and of pentachlorophenol from cultures of wild type strains, P. cheysocporium, Trametes sp. and Pleurotus ap., was observed. The activities of mangnese peroxidase and laccase was detected in Trametes sp. and pleurotus sp. cultures. However, the activities showed that PCP was degraded under ligninolytic as well as nonligninoytic condicationg that lignin peroxidase, manganese peroxidase, and laccase are not essential in the biodegradation of PCP by white rot fungi.

  • PDF

백색부후균에 의한 리그닌의 중합화와 탈중합화 (제1보)-리그닌분해균에 의한 Lignosulfonate의 분해- (Polymerization and Depolymerization of Lignins by White-Rot Fungi(I)-Degradation of Lignosulfonate by Lignin-degrading Fungi-)

  • 정현채;김병수;박종열
    • 펄프종이기술
    • /
    • 제29권4호
    • /
    • pp.64-72
    • /
    • 1997
  • 백색부후균에 의한 리그닌의 분해양상을 검토하기 위해 리그닌 분해능이 우수하고 laccase활성이 높은 LKY-7 및 C. versicolor-13 균주와 manganese peroxidase 활성은 비교적 높으나 laccase활성이 전혀 나타나지 않는 LSK-27 균주로 lignosulfonate를 처리하였다. LKY-7 과 C. versicolor-13 균주에서는 lignosulfonate의 중합화 현상이 관찰되었으며 중합화는 laccase 활성 과 비례하는 것으로 나타났다. LSK-27 균주에서는 lignosulfonate의 고분자 영역이 분해되면서 탈중합화가 일어났으며 리그닌 분해 효소로는 manganese peroxidase만 검출되었다. 보조기질로 glucose를 첨가한 결과, LKY-7 균주에서는 laccase 활정이 각소하면서 중합화 현상이 어느 정도 감소하였으나 C. versicolor-13 균주는 laccase 활성의 증가와 함께 중합화도 촉진되는 것으로 나타났다. 또한 LSK-27 균주에서도 glucose 첨가에 의해 manganese peroxidase 활성이 증가되면서 lignosulfonate의 중합화가 관찰되었다. lignosulfonate 중합화에는 laccase 뿐만 아니라 manganese peroxidase도 관여하며 보조기질로서 탄소원의 종류도 영향을 미칠것으로 검토되었다.

  • PDF

Mechanism Used by White-Rot Fungus to Degrade Lignin and Toxic Chemicals

  • Chung, Nam-Hyun;Lee, Il-Seok;Song, Hee-Sang;Bang, Won-Gi
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권6호
    • /
    • pp.737-752
    • /
    • 2000
  • Wood-rotting basidiomycetous fungi are the most efficient degraders of lignin on earth. The white-rot fungus Phanerochaete chrysosporium has been used as a model microorganism in the study of enzymology and its application. Because of the ability of the white-rot fungus to degrade lignin, which has an irregular structure and large molecular mass, this fungus has also been studied in relation to degrading and mineralizing many environmental pollutants. The fungus includes an array of enzymes, such as lignin peroxidase (LiP), manganese-dependent peroxidase (MnP), cellobiose:quinone oxidoreductase, and $H_2O_2$-producing enzymes and also produces many other components of the ligninolytic system, such as veratryl alcohol (VA) and oxalate. In addition, the fungus has mechanisms for the reduction of degradation intermediates. The ligninolytic systems have been proved to provide reductive reactions as well as oxidative reactions, both of which are essential for the degradation of lignin and organopollutants. Further study on the white-rot fungus may provide many tools to both utilize lignin, the most abundant aromatic polymer, and bioremediate many recalcitrant organopollutants.

  • PDF

백색부후균 Coriolus hirsutus LD-1의 리그닌분해효소 활성과 염료탈색에 관한 연구 (Production of Lignin Degrading Enzymes and Decolorization of Dye Compounds by White-rotting Fungi Coriolus hirsutus LD-1)

  • 남은숙;하상우;박신인
    • 한국환경농학회지
    • /
    • 제25권3호
    • /
    • pp.211-216
    • /
    • 2006
  • Coriolus hirsutus LD-1 균주의 리그닌분해효소 활성과 몇몇 염료의 탈색능을 조사하였다. 백색부후균인 LD-1 균주는 laccase(16,388.9 U/L)와 manganese- dependent peroxidase (19.81 U/L)는 생산하였으나 lignin peroxidase를 생산하지 않았다. 균주를 염료와 함께 8일간 배양했을때 염료 RBBR과 염료 BB의 탈색율은 각각 70.2%와 98%로 나타났다. Manganese-dependent peroxidase는 8일간 배양 중 효소 활성은 매우 낮은 반면 laccase는 지속적으로 생산되어 대단히 높은 활성을 나타내었다. 백색부후균인 Coriolus hirsutus LD-1에 의한 염료의 탈색은 주로 laccase에 의한 것으로 사료되었다.

경안천 유역 오염토양에서 분리한 방선균의 염화 페놀계 화합물 분해 (Degradation of Chlorinated Phenolic Compounds by Soil Actinomycetes Isolated from the Contami-nated Soil Nearby the Kyung-An River)

  • 김성민;김창영;김응수
    • 한국미생물·생명공학회지
    • /
    • 제30권3호
    • /
    • pp.287-292
    • /
    • 2002
  • 본 연구에서는 경안천 유역에 있는 주유소 오염토양으로부터 대표적인 아조계 염료 congo-red분해능이 우수한 토양 방선균, SMA-2를 분리 선별하고, SMA-2의 배양조건을 최적화하여 2,4-dichlorophenol의 산화에 관여하는 actinomycetes lignin peroxidase(ALiP)의 활성도에 대한 특성을 규명하였다. 기존에 보고된 방선균 유래 ALiP와는 달리, SMA-2유래 ALiP효소는 pH6에서 최고의 활성을 보였으며, 2,4-DCP와 $H_2$$O_2$에 대한 Km값이 각각 0.21mM과 8.5mM로 측정되었다. 또한 최적화된 배지에서 성장한 SMA-2의 배양액은 2,4-dichlorophenol 뿐만 아니라 2-chlorophenol, 2,4,6-trichlorophenol, 2,6-dichlorophenol, phenol, 4-chloropheno떼 대해서도 산화능을 보임으로써, 토양 방선균을 이용한 염화 페놀계 화합물이 포함된 오염 토양의 생복원 가능성을 제시하였다.

Bioconversion of Lignocellulose Materials

  • Pothiraj, C.;Kanmani, P.;Balaji, P.
    • Mycobiology
    • /
    • 제34권4호
    • /
    • pp.159-165
    • /
    • 2006
  • One of the most economically viable processes for the bioconversion of many lignocellulosic waste is represented by white rot fungi. Phanerochaete chrysosporium is one of the important commercially cultivated fungi which exhibit varying abilities to utilize different lignocellulosic as growth substrate. Examination of the lignocellulolytic enzyme profiles of the two organisms Phanerochaete chrysosporium and Rhizopus stolonifer show this diversity to be reflected in qualitative variation in the major enzymatic determinants (ie cellulase, xylanase, ligninase and etc) required for substrate bioconversion. For example P. chrysosporium which is cultivated on highly lignified substrates such as wood (or) sawdust, produces two extracellular enzymes which have associated with lignin deploymerization. (Mn peroxidase and lignin peroxidase). Conversely Rhizopus stolonifer which prefers high cellulose and low lignin containg substrates produce a family of cellulolytic enzymes including at least cellobiohydrolases and ${\beta}-glucosidases$, but very low level of recognized lignin degrading enzymes.

Cytochemical Evidence on Seasonal Variation of Peroxidase Activities in Cambial Region of Pinus densiflora, Ginkgo biloba, and Populus alba

  • Wi, Seung-Gon;Lee, Kwang-Ho;Kim, Yoon-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권4호
    • /
    • pp.17-24
    • /
    • 2000
  • The peroxidase activity was localized cytochemically to get an insight into its precise function in lignin biosynthesis. In this work, cerium chloride ($CeCl_3$) was used as a trapping agent for hydrogen peroxide ($H_2O_2$) generated from peroxidase. Seasonal variation of peroxidase activities in cambial region of Populus, Pinus, and Ginkgo was investigated at subcellular levels. Under transmission electron microscopy, electron dense deposits of cerium perhydroxide formed by reaction with $H_2O_2$ were observed in cambium and its immediate derivatives. The staining with $CeCl_3$ in cambium varied with growth seasons. The strongest $H_2O_2$ accumulation, regardless of tree species, appeared in May. Staining pattern of $CeCl_3$ in the cambium of poplar indicated that the production of peroxidase started in March before the opening of buds and reached the highest in May and then declined in August. Ginkgo and Pinus showed relatively late generation of $H_2O_2$ production when compared with Populus. Although Ginkgo and Pinus are classified into gymnosperms, however, the generation of peroxidase production and its duration was different from each other. Little staining appeared in all the tree samples collected in September before falling the leaves.

  • PDF

산소 의존도가 낮은 Phanerochaete chrysosporium YU을 이용한 lignin peroxidase생산

  • 김은정;권신;류원률;조무환
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.619-620
    • /
    • 2001
  • Lignin peroxidase was produced by free cells of Phanerochaete chrysosporium YU in shaking-flask batch cuture. Without aerating, the maximum activity was 785U/L. As nitrogen source, ammonium tartrate was used for LiP production and 0.02% ammonium tartrate concentration showed the highest potential for LiP prodution.

  • PDF