• Title/Summary/Keyword: Lightweight aggregates

Search Result 165, Processing Time 0.028 seconds

Study on the prevention methods of radial cracks generated in artificial lightweight aggregate (인공경량골재 내부에 발생하는 방사형 균열의 억제 방법에 관한 연구)

  • Kang, Jimin;Kim, Kangduk;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.199-204
    • /
    • 2015
  • In this study, prevention methods of radial cracks generated inside of artificial lightweight aggregate made of reject ash and dredged soil were investigated. The reject ash and dredged soil had mixed with weight ratio of 7 : 3 and formed to spheric shape of 5~20 mm diameter, then, the aggregates were manufactured using flash sintering method at $1200^{\circ}C$ for 10 min. The formation of radial cracks in the aggregates were suppressed as the size of specimen decreased. Also, the addition of silica to aggregates had prevented generation of the radial cracks. As the size and the amount of silica powder added increased, the development of radial cracks was constrained. Therefore the artificial lightweight aggregate manufactured in this study expected to be applicable to many fields such as construction and environmental usages. Also it is expected to contribute greatly to increase the recycling rate of reject ash and dredged soil.

Evaluation of Reproducibility for Mechanical Properties of Lightweight Concrete using Bottom Ash Aggregates and Foam (바텀애시 골재와 기포를 이용한 경량 콘크리트의 역학적 특성에 대한 재현성 평가)

  • Ji, Gu-Bae;Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • The objective of this study is to examine the reproducibility for compressive strength development and mechanical properties of lightweight concrete made using bottom ash aggregates and foam(LWC-BF). Based on the mix proportions conducted by Ji et al., six identical mixes were prepared with different actual foam volume ratios from 0% to 25% and water-to-binder ratios from 25% to 30%. The presently measured properties, including initial slump, slurry density, compressive strength gains at different ages, splitting tensile strength, and modulus of rupture, were very close to those determined in the previous tests by Ji et al. Thus, the developed LWC-BF has a good potential in obtaining a reproducibility for compressive strength development and mechanical properties even though the troubles of mixing control owing to the addition of preformed foam.

An Experimental Study on Carbonation Resistance of Concrete Depending on Surface Treatment of Lightweight Aggregates (경량골재의 표면처리에 따른 콘크리트의 탄산화 저항성에 관한 실험적 연구)

  • Eom, In-Hyeok;On, Jea-Hoon;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.89-91
    • /
    • 2012
  • The purpose of this study is to investigate the mechanical property and carbonation resistance of concretes using surface treated lightweight aggregate. In order to evaluate mechanical property and carbonation resistance, slump, compressive strength, and carbonation depth are tested. Slump of concretes using surface treated lightweight aggregate measured 120~125mm, which are lower than slump of NWAC. Compared to compressive strength of NWAC, compressive strength of concretes using surface treated lightweight aggregate showed a level of 82.8~95.9%. In carbonation resistance test, carbonation depth of concretes using surface treated lightweight aggregate measured 10.2~11.3mm, which are lower than carbonation depth of NWAC. As a result, it is found that compressive strength is decreased slightly but carbonation resistance is improved, in case of using surface treated lightweight aggregate.

  • PDF

Manufacturing of Lightweight Aggregate using Sewage Sludge by a Pilot Plant(10ton/day) (Pilot Plant(10톤/일)를 이용한 하수슬러지 인공경량골재의 제조)

  • Mun, Kyoung-Ju;Lee, Hwa-Young;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.117-120
    • /
    • 2006
  • The purpose of this study is to efficiently treat the sewage sludge discharged from sewage treatment plants and evaluate the feasibility of the manufacture of lightweight aggregates(LWA) using a large quantity of sewage sludge. Sintered lightweight aggregate from sewage sludge is experimentally manufactured with various mass ratios of clay to sewage sludge by a pilot plant, and is tested for density, water absorption and crushing value. Their physical properties are compared to those of a commercial sintered lightweight aggregate. As a result, an experimentally manufactured lightweight aggregate is similar or superior in physical properties to the commercial lightweight aggregate. The manufactured lightweight aggregate could be used for structural concrete and non-structural concrete.

  • PDF

Slump Loss and Compressive Strength of Lightweight Concrete according to the Replacement Level of Lightweight Fine Aggregate (경량잔골재 치환율에 따른 경량콘크리트의 슬럼프 손실과 압축강도)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.227-228
    • /
    • 2010
  • Five lightweight concrete mixes were prepared to examine the effect of the replacement level of lightweight fine aggregates on the slump loss and compressive strength of lightweight concrete. Test results showed that the increase of the replacement level of lightweight fine aggregate accelerated the slump loss of the lightweight concrete, while had marginal influence on the compressive strength development of the concrete.

  • PDF

The Quality Characteristics of Artificial Aggregates Using Bottom ash from Industrial Waste Incinerator (산업쓰레기 소각재를 이용한 인공골재의 품질특성)

  • 김재신;고대형;문경주;백명종;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.257-262
    • /
    • 2000
  • The purpose of this study is grasping quality aggregate using Bottom Ash of Industrial Waste Incinerator, and is evaluating possibility of application as construction materials. Cement and Fly ash is used with binder of aggregates using bottom ash. It is tested for basic property and strength of artificial aggregates, and the results are compared with crushed stone and elution tests is done for environmental safety. In the results of tests, it is confirmed that basic property and strength are lowe than crushed stone but the aggregates have possibility of application as artificial lightweight aggregates. When it is manufactured with aggregates, it is sage environmentally because of protecting elution of harmful heavy metals.

  • PDF

Development and Application of High-Strength Lightweight Concrete, and its Structural Properties (고강도 경량콘크리트의 개발, 구조특성 및 실용화)

  • Choi, Myung-Shin;Ahn, Jong-Moon;Shin, Sung-Woo;Kang, Hoon;Kim, Jung-Shik;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.37-44
    • /
    • 1998
  • The objective of this study is development of high strength lightweight concrete and application or structural use. For this, mix proportions for each strength level were selected from lab tests, and adapted to producing ready-mixed concrete in batcher plant. It was very important to prewet the lightweight aggregates sufficiently for producibility and also workability. Splitting tensile strength of high-strength lightweight concrete produced has lower values than that of normal weight concrete, but modulus of rupture and modulus of elasticity are not less than normal weight concrete. The strength reduction factor ($\lambda$) for sand-lightweight concrete make higher than 0.85 present in structures using high-strength lightweight concrete. And it was showed that not parabola distribution but triangular distribution of stress in compression zone.

  • PDF

Evaluation for Characteristics of Lightweight Polymer Concrete (경량 폴리머 콘크리트의 특성연구)

  • 채경희;최예환;연규선;이윤수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.4
    • /
    • pp.106-112
    • /
    • 2001
  • Recent advance in material technology has accelerated the development of high strength concrete using lightweight artificial aggregates. The lightweight concrete has many advantages that the reduction of dead loads and the increase in load capacity can offer. In this study the lightweight polymer concrete using unsaturated polyester resin and lightweight aggregate were prepared and tested for testing the physical and the mechanical properties. The compressive strengths of lightweight polymer concretes with apparent specific gravity for 1.32 to 1.78 were 250 to 470 kfg/cm$^2$ and flexural strengths were measured to be in the range of 1/3-1/4 of compressive strength.

  • PDF

Fundamental Properties of Lightweight Polymer Concrete (경량 폴리머 콘크리트의 기초적 성질)

  • 채경희;연구석;이윤수;이기원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1139-1144
    • /
    • 2000
  • Recent advance in material technology has accelerated the development of high strength concrete using lightweight artificial aggregates. The lightweight concrete has many advantages that the reduction of dead lads and the increase in load capacity can ofter. In this study, lightweight polymer concrete using unsaturated polyester resin and lightweight aggregate were prepared and tested for testing the physical and the mechanical properties. The compressive strengths of lightweight polymer concretes with specific gravities from 1.32 to 1.78 were compressive strength of 250 to 470 $kgf/cm^2$ and flexural strengths were measured to be in the range of a third to a quarter of compressive strength